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Motivation
Part I: Analysis robustness tests with synthetic sky catalogs

Case study: DES & DESI
Part II: Accurate and precise models for lensing and 
clustering cross-correlations

Combining perturbation theory & simulation

A roadmap to obtaining accurate and precise cosmological constraints from cross-
correlation analyses



We are converging on a standard 
picture of how the universe 
evolved over the last 13 billion 
years:

Quantum fluctuations made 
macroscopic by inflation seed 
large scale structure imprinted 
on CMB
Structure growth driven by 
the presence of dark matter
Late time accelerated 
expansion driven by dark 
energy figure courtesy of eBOSS/SDSS

!

The Standard Model of Cosmology



Planck Collaboration 2018

!

The Standard Model of Cosmology

Nearly all cosmological observations agree on this standard model: 
LCDM



Low Redshift Universe Tests of 
LCDM

Upcoming surveys will put LCDM to the test, but only if we can get a 
handle on systematics (both observational and modeling)

Heymans & Troster et al. 2020



The next generation is here

fig. courtesy of D. Kirkby



Probes of low-redshift structure: 
3x2-point

galaxies x galaxies
 galaxy clustering

lensing x lensing
cosmic shear

galaxies x lensing
galaxy-galaxy lensing



The power of combined  
CMB/Galaxy clustering/WL

fig. courtesy of C. Zhou and A. Leauthaud

We need to exploit cross-correlations 
between DESI/LSST/SO/S4 in order 
to make the most out of all 
experiments.

DESI collaboration 2016



The power of combined  
CMB/Galaxy clustering/WL

DESI collaboration 2016

We need:
Simulations that include x-corr to 
develop and test analysis 
methodology.
Models that are accurate enough to 
confront this powerful data!

Lots of work ahead

fig. courtesy of C. Zhou and A. Leauthaud



matter distribution (180 Mpc) 

N-body Simulations

movie, simulation, statistics: Matt Becker, Ralf Kaehler, Yao-Yuan Mao, Rachel Reddick, Risa Wechsler (Stanford/SLAC)



Part I: Testing x-corr analyses with 
synthetic sky catalogs



Goal: Perform end-to-end tests going from simulated galaxy catalogs 
contaminated with realistic systematics to cosmological parameters.

Robustness to modeling assumptions/observational systematics

Testing x-corr analyses with 
synthetic skies



Goal: Perform end-to-end tests going from simulated galaxy catalogs 
contaminated with realistic systematics to cosmological parameters.

Robustness to modeling assumptions/observational systematics
Requirements:

Need realistic correlations between cosmological observables and 
quantities used for sample selection

Testing x-corr analyses with 
synthetic skies



Example: DESI target selection
LRG selection 

ELG selection
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Variables used in target selection correlate strongly
with clustering amplitude. 

-> 
impacts, e.g., fiber assignment/fiber collisionsZhou 

et al 2020

Raichoor 
et al 2020



Example: DESI target selection
LRG selection High-resolution N-body simulations combined with 

 prescriptions for empirically matching
 color and magnitude distributions can reproduce

 these trends (SHAM)
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JDR in prep.

Zhou 
et al 2020



Goal: Perform end-to-end tests going from simulated galaxy catalogs 
contaminated with realistic systematics to cosmological parameters.

Robustness to modeling assumptions/observational systematics
Requirements:

Need realistic correlations between cosmological observables and 
quantities used for sample selection
High enough resolution to model all measurements accurately, e.g. 
clustering and lensing
Many times the volume of the survey (must be inexpensive)

Testing x-corr analyses with 
synthetic skies



ADDGALS

Wechsler, JDR in prep.

Adding Density Determined 
Galaxies to Lightcone Simulations

Run abundance matching model 
on high resolution simulation
Use machine learning to 
bootstrap information from high-
res simulation into moderate 
resolution light-cones.
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The Dark Energy Survey
Imaging survey of the southern sky

4m Blanco Telescope on Cerro Tololo, Chile
~5000 sq. degrees
5 bands: grizy

Done taking 6 years of data, results published for first year (Y1) and 
working on analyzing first 3 years (Y3)



The Buzzard Flock

JDR et al 2019

 
 

 

Low Resolution 
Lightcones 

1050, 2600, 4000 
Mpc/h

Source Galaxy Catalog
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Highlight: Validating the 3x2pt 
Pipeline
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JDR et al 2021 (under DES review)
Myles, Alarcon et al.  2020

(incl. JDR)



Highlight: Validating the 3x2pt 
Pipeline

MacCrann, JDR et al. 2018

Constrained biases on inference to <1 sigma with high confidence



Buzzard sims used in a 11/14 of  
“DES Y1 Results”

Gatti, Vielzeuf et al. (incl. JDR) 2018
Hoyle et al. (incl. JDR)  2018

Chang et al. (incl. JDR)  2018

MacCrann, JDR et al. 2018

Gruen, Friedrich, Krause, JDR et al.
Friedrich, Gruen, JDR, Krause et al.

Density Split Statistics

Redshift Estimation 3x2pt Parameter Inference

Mass Mapping



DES Y3:  
Unblinded and writing papers



DESI is next!

HSC (~630 deg2)

HSC (~90 deg2)

HSC (~680 deg2)

KiDS (~750 deg2) DES (~500 deg2)

Figure from 1611.00036 w/ additions by C. Blake



Synthetic skies of the future

What do we need to test combined BAO/RSD/WL/CMB lensing 
analyses (e.g. DESI x LSST x SO/S4)



Synthetic skies of the future

Similar simulation techniques 
are capable of including more 

relevant correlations

But…

they are extremely expensive to 
fit to data, slowing down 

model development.

Behroozi et al. 2018



ML/HPC is driving progress!

Beginning to apply automatic 
differentiation/GPU 
acceleration techniques 
developed for ML applications
—> 
Allows for better sampling 
methods (HMC) that will 
drastically speed up model 
development cycles, and allow 
for the incorporation of more 
realism.

Behroozi et al. 2018



Part II: Accurate and precise models for 
lensing and clustering cross-correlations

The Aemulus Project



Limitations of current analyses

One of the main ingredients required to 
constrain cosmological parameters from 

galaxy clustering or lensing observations is 
a model for the galaxy power spectrum.

Current models require drastic scale cuts, 
and will only get worse as precision of 

measurements improves.

Heymans, 
Troster et al. 2020



!

PT in current analyses

Pandey, JDR et al. 2021 (under DES review)

Simulated Analysis on Buzzard
Perturbation theory 
models designed for 
redshift space clustering 
are not straight-forward 
to apply to x-corr.
Need to worry about 
projection effects.



Simulation or Perturbation theory?

Perturbation theory is general, but 
pushing to higher order yields 
diminishing returns
Simulations of dark matter are 
converged to k~1.

Schneider et al 2016Foreman et al 2015



Simulation or Perturbation theory?

How to know when to stop?

Zhai et al. (incl. JDR) 2018



Modi, Chen & White 2019

Proof of concept showed that this idea 
extends the reach of PT by a factor of 
~2 in scale.

In order to apply to data we need a 
model for the cosmology dependence 
of these spectra.

Simulation and Perturbation theory!

Rather than halo based models, use symmetries based expansions popular 
in perturbation theory models. Only keep fields allowed by rotation/

Galilean invariance and the equivalence principle

δg(q) = F[δL(q), δ2
L(q), s2(q), ∇2δL(q)]



Sampling Cosmological Parameter 
Space

4 DEROSE ET AL.

Figure 1. Optimization of the Latin Hypercube
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Figure 2. Allowed CMB parameter space with the cosmologies of our 40 building boxes (black) and 7 test cosmologies (red) overplotted.

4 MCCLINTOCK, T., ET AL.
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Figure 2. The CMB allowed parameter space(contours) for �8 and
⌦M , which is a union of BAO from BOSS DR11, the Union SNIa
catalog, and Planck/WMAP9. Contour levels are the 1, 2, and 3�
confidence contours. Points are the locations of the AEMULUS sim-
ulations used to construct the emulator. The red stars mark the lo-
cations of the test suite.

None of the test suite simulations were used in the construc-
tion of the emulator.

2.1. Cosmological Models

Cluster abundance is most sensitive to the matter power
spectrum normalization �8 and matter content ⌦M . The
AEMULUS simulations exist in the parameter space p 2
[⌦bh

2,⌦ch
2,w,ns,H0,Neff,�8] where ⌦b is the baryonic mat-

ter fraction, ⌦c is the cold dark matter fraction, ns is the
power spectrum index, h = H0/100km/s/Mpc is the Hub-
ble constant, and Neff is the effective number of relativistic
species.

2.2. Halo Identification

Halos were identified using the ROCKSTAR halo finder
(Behroozi et al. 2013), which identifies halos across simu-
lation snapshots. We use the M200b mass definition, where
the halo is defined as a spherical overdensity (SO) � = 200
times more dense than the background. We conservatively
only consider halos with 200 or more particles. The mass
and abundance of the lightest halos were found to depend on
the mass resolution of the simulations. To account for this
systematic, we applied a correction to the recovered abun-
dances as described in Section 4.2.5 in DeRose 2018.

Halos in each snapshot were split into mass bins begin-
ning at the minimum halo mass resolved in each simulation.

The maximum edge was fixed arbitrarily at 1017
h

-1M�, and
no simulation had halos at or above 1016. Subhalos were
ignored. Using 83 = 512 spatial jackknife subregions, we es-
timated the covariance matrix between bins in a given snap-
shot. We ignore correlations between mass bins across dif-
ferent snapshots when performing the fits described in Sec-
tion 2.3.

2.3. Mass Function

Our emulators were not trained on the measured mass
functions directly. Instead, we fit the mass function of each
simulation snapshot with a modified version of the mass
function presented in appendix C of Tinker et al. (2008).
Similar fitting functions were presented in Jenkins et al.
(2001) and Warren et al. (2006). In Tinker et al. (2008),
the cosmological parameters altered the mass function in two
ways: 1) changing the contribution of matter to the critical
density ⌦m⇢c and 2) the mapping from mass to the RMS
variance of the linear density field �(M,z). We extend this
approach by allowing the fitting function parameters to have
cosmological dependence as well, which we captured via the
Gaussian Processes that underpin the emulator.

This fitting function has the following form

dn

dM
= G(�)

⇢̄m

M

d ln�-1

dM
(2)

where the halo multiplicity function G(�) is given by

G(�) = B

⇣�

e

⌘-d

+�- f

�
exp(-g/�2) (3)

where �2 is the rms variance of the linear density field

�2 =
1

2⇡2

Z
P(k,z)Ŵ (kR)k2

dk. (4)

evaluated at the Lagrangian scale of the halo, i.e. R =
(3M/4⇡⇢̄m)1/3. P(k,z) is the linear matter power spectrum
as a function of wavenumber k and redshift z, and Ŵ is the
Fourier transform of the real-space top-hat window function.
Additionally, we enforce that all dark matter resides in halos,
which means that

Z
G(�)d ln�-1 = 1. (5)

The simulation is unable to sample arbitrarily small modes
of the power spectrum due to the finite size of the box. We
confirmed that our results are insensitive to a cut in k = 2⇡/R

at the scale of our simulation R = 1.05 h
-1Gpc. We use the

publicly available CLASS1 to calculate the power spectrum.

1
http://class-code.net/

JDR et al. 2018



Emulating Component Spectra
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The Aemulus Project

Kokron, JDR, Chen,
 White & Wechsler

arxiv:2101.11014



Ability to fit complex samples
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This model can handle modest amounts of assembly bias.
Fits to kmax~0.6 lead to agreement better than 1% out to k~1



“Built in” accounting of baryonic 
effects
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of baryons on the matter distribution at intermediate scales.
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Future Directions for Hybrid 
Simulation/PT models

Apply to joint (CMB and galaxy) lensing and RSD 
analyses in current data
Extensible to higher order statistics/field level 
analyses —> better initial density reconstruction 
for BAO?



Emulators in DESI

As DESI emulator sub-working group chair, I am helping leading the effort 
to prepare for cross-correlation analyses:

Emulator mock challenge
Focused on modeling systematics for combined probe analyses. 
Will provide insight into strengths and weaknesses different 
emulation techniques

Analysis pipeline development
Need to integrating emulators into frameworks that exist for joint-
probe analyses (cosmosis/cobaya etc)
Think about optimal sampling methods to expedite analysis



Summary

Cross correlation science in DESI will lead to exciting insight about 
dark energy!

We have designed an algorithm that allows us to produce 
realistic suites of galaxy catalogs.

Used to test DES Y1/Y3 and DESI cosmology analyses
ML inspired techniques will continue to improve realism

Combinations of perturbation theory and simulation lead to a 
hybrid model that is the best of both worlds

Emulator for lensing and clustering x-corr ready to be applied 
to current data
Plethora of future directions to model higher order stats.

Thanks!


