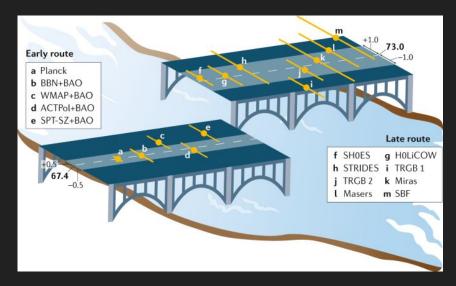
Measuring H_0 Without the Sound Horizon: A New Constraint From DESI

Erik Zaborowski
PhD Candidate
zaborowski.11@osu.edu

BCCP Seminar Oct 21, 2025

DARK ENERGY SPECTROSCOPIC INSTRUMENT

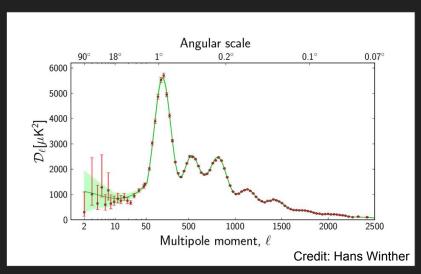

U.S. Department of Energy Office of Science

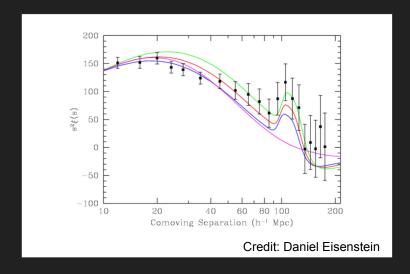
Motivation: Probing the Hubble tension


- Now >6 σ tension between local (SH0ES) and early-time (*Planck*/ACT/SPT) H_0 measurements
- *Key observation:* Many early-time probes (CMB, BAO) infer *H*₀ primarily via the **sound horizon**
 - → Proposed solutions **often target this** scale

Credit: Adam Riess

Question: Can we measure H_0 independently of sound horizon and SNe Ia calibration?


Detour: Sound horizon physics


The sound horizon in observations

• Two closely related distances:

 $r_s \equiv$ sound horizon at **photon decoupling** (sets **CMB peak spacing**)

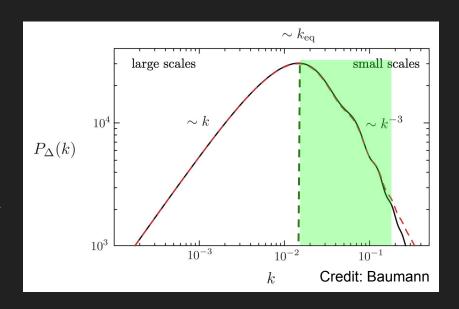
 $r_{\rm d} \equiv$ sound horizon at **baryon decoupling** (the **BAO ruler** used at low z)

Shorter sound horizon → reduced Hubble tension

$$r_{\rm d} = \int_{z_{\rm d}}^{\infty} \frac{c_s(z)}{H(z)} dz$$

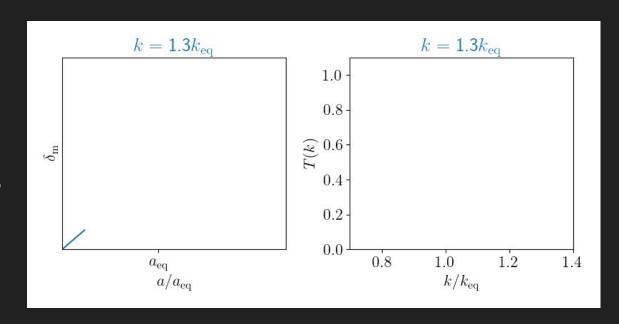
 $\simeq 147 \text{ Mpc} \times \left(\frac{\omega_{\rm b}}{0.0223}\right)^{-0.13} \left(\frac{\omega_{\rm bc}}{0.143}\right)^{-0.23} \left(\frac{N_{\rm eff}}{3.04}\right)^{-0.1}$

- Many sound horizon observables (e.g. CMB acoustic angle, BAO) are distance ratios: $D(z) / r_d \sim f(\Omega_m, z) / H_0 r_d$
 - \rightarrow Can trade off lower $r_{\rm d}$ for higher H_0
- Proposed **new physics** to resolve the Hubble tension often takes this approach (e.g. early dark energy, $\Delta N_{\rm eff}$)


Goal: Test these ideas with a sound horizon-independent technique

Another ruler: The matter-radiation equality scale

- Wavenumber k_{eq} when $\Omega_{\text{m}}(z_{\text{eq}}) = \Omega_{\text{r}}(z_{\text{eq}})$
- Well-known as the turnover scale of the matter power spectrum


$$k_{\rm eq} = (2H_0^2 z_{\rm eq})^{1/2}$$

 $\simeq 7.46 \times 10^{-2} \,\omega_{\rm bc} \left(\frac{T_{\rm CMB}}{2.7 {\rm K}}\right)^{-2} \,{\rm Mpc}^{-1}$

• Also modulates the broadband shape for $k > k_{eq}$

Equality scale intuition

- During radiation domination: growth suppressed by pressure support $(\delta \sim \ln a)$
- **During matter domination:** perturbations grow unimpeded $(\delta \sim a)$
- Shape of power spectrum contains k_{eq} information

Animation inspired by David Parkinson

Two standard rulers \rightarrow two H_0 measurements

- Each standard ruler probes physics at different times
 - \circ $r_s: z \sim 1,100 / t \sim 370,000 \text{ yr}$
 - o k_{eq} : $z \sim 3,400 / t \sim 51,000 \text{ yr}$
- Each may be **impacted differently** by modified pre-recombination physics

We can ask:

- 1. Is H_0 from k_{eq} still in tension with **local measurements**? (independent H_0 tension probe)
- 2. Is H_0 from k_{eq} consistent with r_s ? (ACDM null-test)

A demonstration with early dark energy

Farren, Philcox, Sherwin (2022)

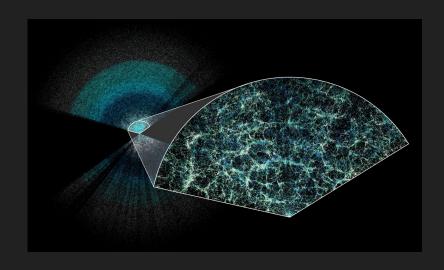
- Gerrit Farren et al. ran a Euclid-like H_0 forecast for EDE vs. Λ CDM, with / without r_s information
- Finding: EDE increases inferred H_0 from r_s , relative to broadband / k_{eq}

ACDM

	H_0
FS	$68.1^{+1.2}_{-1.6}$
$FS + r_s$ marg.	$68.0^{+1.5}_{-2.0}$
FS + BBN	68.17 ± 0.40
$FS + BBN + r_s$ marg.	68.15 ± 0.72
BAO + BBN	68.28 ± 0.49
$BAO + BBN + r_s marg$	$68.8^{+1.4}_{-1.6}$

Gerrit

Erik

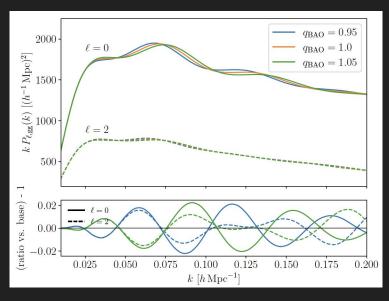


EDE

	EDE (Planck+SH0ES)	EDE (ACT)
FS	$67.58^{+0.95}_{-1.4}$	$67.08^{+0.95}_{-1.2}$
$FS + r_s$ marg.	66.7 ± 1.8	$64.53_{-0.74}^{+0.88}$
FS + BBN	69.54 ± 0.45	73.43 ± 0.51
$FS + BBN + r_s$ marg.	$67.39^{+0.89}_{-0.79}$	66.82 ± 0.53
BAO + BBN	69.97 ± 0.50	74.62 ± 0.69

A new measurement: Zaborowski et al. (2025) (imminent)

- DESI DR1
 - Galaxy clustering r_s-dependent
 - Lyman-a forest (3-d AP effect)
- Minimal external assumptions
 - BBN ω_b prior (Schoeneberg 2024)
 - \circ CMB acoustic scale θ_* (*Planck* 2018)
- Additional r_s -free datasets
 - O DES Year 5 supernovae
 - Planck+ACT CMB lensing [x unWISE galaxies]
 - DES Year 3 6×2pt

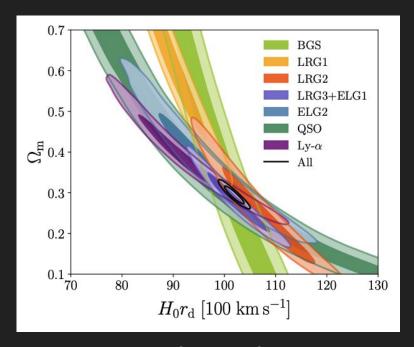

Claire Lamman / DESI Collaboration

Removing the sound horizon dependence

• Rescale power spectrum wiggles:

$$P_{\text{lin}}(k, q_{\text{BAO}}) = P_{\text{lin}}^{\text{smooth}}(k) + P_{\text{lin}}^{\text{wiggly}}(q_{\text{BAO}}^{-1} \cdot k)$$

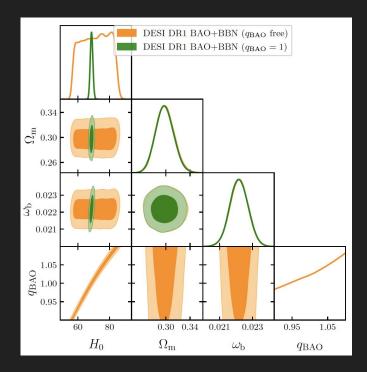
- Changes the **effective sound horizon** scale by factor $1/q_{\rm BAO}$
- Marginalize over this scale during analysis
 - \rightarrow Residual H_0 information primarily from broadband $/ k_{eq}$



Zaborowski et al. (2025)

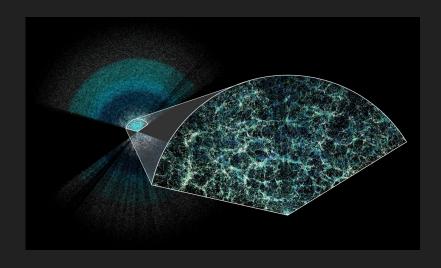
Developed by Farren, Philcox, Sherwin (2022)

Uncalibrated post-reconstruction BAO (and θ_*)


- Uncalibrated \equiv **agnostic of** (absolute) r_{d}
- Standard BAO analysis only constrains params $\Omega_{\rm m}$ and $H_0 r_{\rm d}$ before BBN calibration

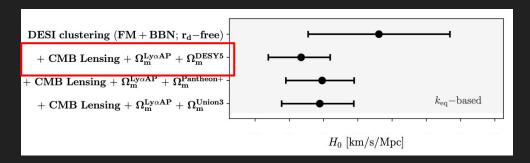
DESI DR1 BAO (DESI Collaboration et al. 2024)

Uncalibrated post-reconstruction BAO (and θ_*)


- Uncalibrated \equiv agnostic of (absolute) r_{d}
- Standard BAO analysis only constrains params Ω_m and $H_0 r_d$ before BBN calibration
- We achieve this using a **consistent rescaling** $(r_d \rightarrow r_d / q_{BAO})$
- Can include θ_* similarly $(r_s \rightarrow r_s / q_{BAO})$

Zaborowski et al. (2025)

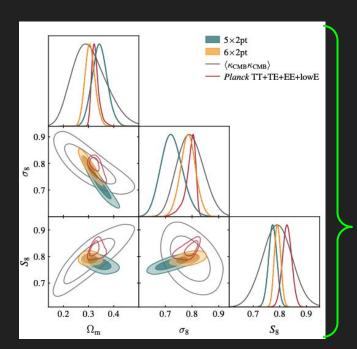
A new measurement: Zaborowski et al. (2025) (imminent)

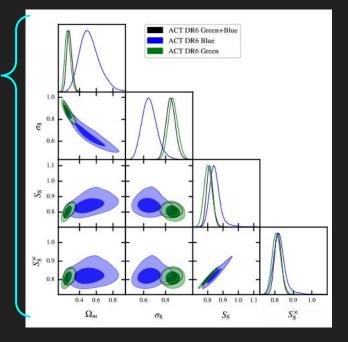

- DESI DR1
 - Galaxy clustering
 - Lyman-a forest (3-d AP effect)
- Minimal external assumptions
 - o BBN ω_b prior (Schoeneberg 2024)
 - \circ CMB acoustic scale θ_* (*Planck* 2018)
- Additional r_s -free datasets
 - DES Year 5 supernovae
 - Planck+ACT CMB lensing [x unWISE galaxies]
 - DES Year 3 6×2pt

Claire Lamman / DESI Collaboration

Uncalibrated type-Ia supernovae

- Trace the shape of the local expansion history (sensitive to $\Omega_{\rm m}$)
- Previous work: Results highly sensitive to supernovae (high $\Omega_{\rm m} \to {
 m low} \, H_0$)
- This work: **Test robustness** by comparing DES Y5 SNe (which caused largest shift) vs. supernova-independent alternative datasets




Zaborowski et al. (2024)

Supernova-independent datasets

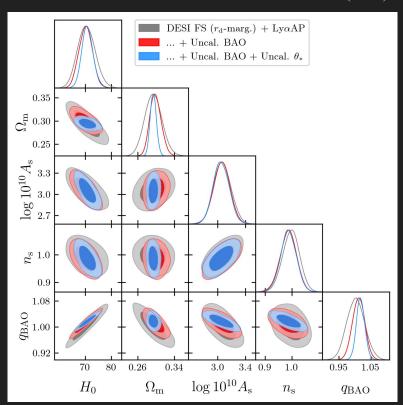
Gerrit Farren et al. (2024)

ACT+*Planck* lensing × unWISE 2D clustering

DES, SPT et al. (2022) (DES Y3 6×2pt)

Includes standard 3×2pt (galaxy clustering and lensing), plus *Planck* and SPT lensing

Results!

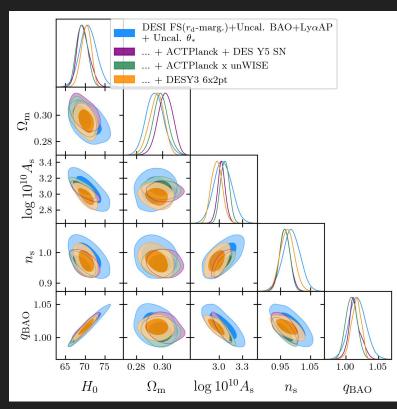

- First: DESI DR1 + minimal assumptions
 - Full-Shape + BBN
 - ... + Uncalibrated BAO
 - \circ ... + Uncalibrated θ_*
- Next: Layer on additional datasets
 - o DES Year 5 supe<u>rnovae</u>
 - Planck+ACT CMB lensing [× unWISE galaxies]
 - DES Year 3 6×2pt
- Finally: H_0 landscape and Hubble tension implications

Results: DESI DR1 + minimal assumptions

Zaborowski et al. (2025)

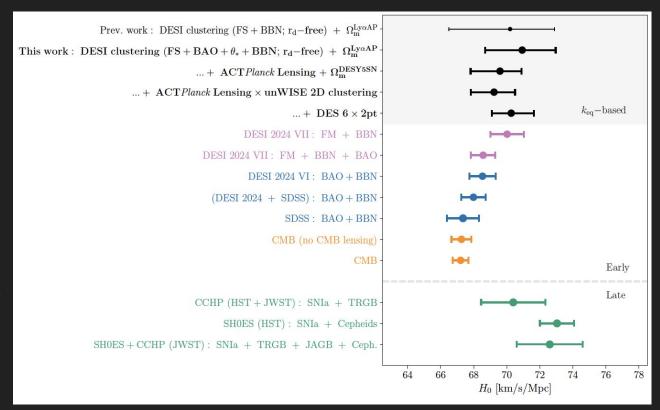
	$H_0^{ m [km\ s^{-1}\ Mpc^{-1}]}$	$q_{_{ m BAO}}$
DESI FS + LyaAP + BBN	70.5 ^{+3.3} -3.4	1.003 ^{+0.027} -0.028
+ Uncal. BAO	70.2 ± 2.6	1.011 ± 0.019
+ Uncal. BAO & θ_*	70.8 ^{+2.0} -2.2	1.018+0.012 -0.013

• $\sim 3\%$ H_0 constraint - already rivals 2024 result including SNe



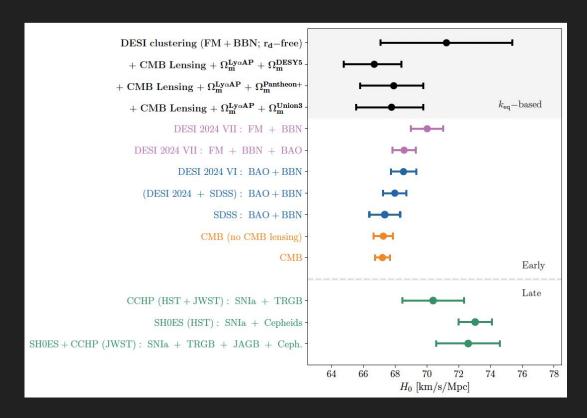
Results: Additional datasets

Zaborowski et al. (2025)


	H_0 [km s ⁻¹ Mpc ⁻¹]	$q_{ m BAO}$
DESI (FS+BAO+LyaAP) + BBN + θ_*	70.8 ^{+2.0} -2.2	1.018 ^{+0.012} -0.013
+ ACT+ <i>Planck</i> Lensing + DES Y5 SN	69.6 ^{+1.3} -1.8	1.014 ^{+0.007} -0.010
+ ACT+ <i>Planck</i> Lensing × unWISE	69.2 ^{+1.3} -1.4	1.009 ± 0.009
+ DES Y3 6×2pt	70.3 ^{+1.4} -1.2	1.016 ± 0.008

- Highly consistent and robust results when including BAO+ θ_*
- Avg H_0 constraint is sub-2%

Updated H_0 landscape


- **Higher** H_0 than in previous work
- Trend emerging?
 - More sound horizon \rightarrow lower H_0
 - More broadband \rightarrow higher H_0
- Slight preference for $q_{\text{BAO}} > 1$ \rightarrow reduced r_{s}

Zaborowski et al. (2025)

Previous H_0 landscape

- Previously, concluded high consistency between r_s and k_{eq} based H_0
- Results driven by high supernova Ω_m

Zaborowski et al. (2024)

(Refresher) Early dark energy

- **EDE increases inferred** H_0 from r_s , relative to k_{eq}
- However, **opposite direction** from what we see in this work (although we do see mild preference for **reduced sound horizon** $(q_{\text{BAO}} > 1))$
- Any meaning that H_0 from k_{eq} sits between r_s and SN measurements? **Future work!**

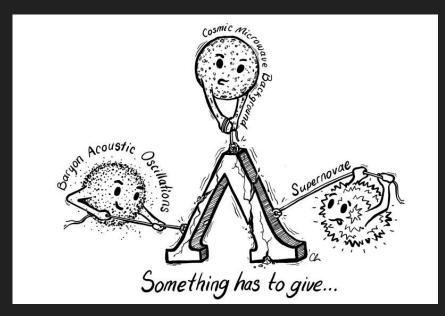
Farren, Philcox, Sherwin (2022)

ACDM

	H_0
FS	$68.1^{+1.2}_{-1.6}$
$FS + r_s$ marg. $FS \perp RRN$	$68.0^{+1.5}_{-2.0}$ 68.17 ± 0.40
$FS + BBN + r_s$ marg.	68.15 ± 0.72
BAO + BBN	68.28 ± 0.49
$BAO + BBN + r_s marg$	68.8+1.4

Gerrit

Erik

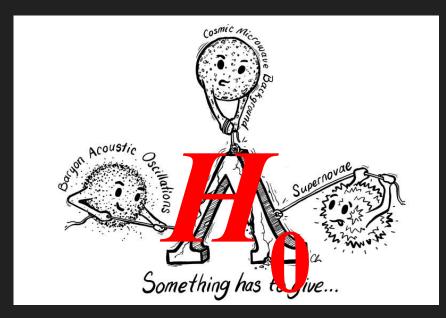

EDE

·	EDE (Planck+SH0ES)	EDE (ACT)
FS	67.58+0.95	$67.08^{+0.95}_{-1.2}$
$FS + r_s$ marg.	66.7 ± 1.8	$64.53_{-0.74}^{+0.88}$
FS + BBN	69.54 ± 0.45	73.43 ± 0.51
$FS + BBN + r_s$ marg.	$67.39^{+0.89}_{-0.79}$	66.82 ± 0.53
BAO + BBN	69.97 ± 0.50	74.62 ± 0.69

Outlook

- Lots of room to improve precision
 - \circ Statistics limited measurement expect $1/\sqrt{2}$ improvement just from DESI DR2/DR3
 - o Cross-correlations, HOD-informed priors to beat down nuisance uncertainties
- In parallel, investigate specific models of modified physics to understand results
 - Early-Universe (e.g. early dark energy)
 - \circ Late-Universe (e.g. $w_0 w_a$)
- Future k_{eq} -based constraints will precisely probe physical origin of Hubble tension

Conclusions



Credit: Claire Lamman

- Sub-2% H_0 , independent of both sound horizon and supernovae
- H₀ intermediate between local and sound horizon-based measurements - future data will determine if trend or fluke
- Ongoing work to understand these results in the context of modified physics

Thank you!

Conclusions

Credit: Claire Lamman (and EZ)

- Sub-2% H_0 , independent of both sound horizon and supernovae
- H₀ intermediate between local and sound horizon-based measurements - future data will determine if trend or fluke
- Ongoing work to understand these results in the context of modified physics

Thank you!