Tackling challenges in galaxy-dark matter connection modeling and secondary biases

Sihan Yuan

with Daniel Eisenstein, Lehman Garrison, Alexie Leauthaud, Boryana Hadzhiyska, Hong Guo, and Sownak Bose

The importance of galaxy-dark matter connection

Wechsler & Tinker 2018

- Inferring cosmological parameters.
- Understanding the physics of galaxy formation.
- Probing the structure and properties of dark matter.

The march to small scales!

The various approaches

Approaches to modeling the galaxy-halo connection

physical models		empirical models		
Hydrodynamical Simulations	Semi-analytic Models	Empirical Forward Modeling	Subhalo Abundance Modeling	Halo Occupation Models
Simulate halos & gas; Star formation & feedback recipes	Evolution of density peaks plus recipes for gas cooling, star formation, feedback	Evolution of density peaks plus parameterized star formation rates	Density peaks (halos & subhalos) plus assumptions about galaxy—(sub)halo connection	Collapsed objects (halos) plus model for distribution of galaxy number given host halo properties
 Expens 	ive Com	nputation co	ost —	Cheap

Wechsler & Tinker 2018

The Halo Occupation Distribution (HOD) model

• The HOD abstracts dark matter into gravitationally bound halos, which are then analytically associated with galaxies.

- The HOD is essential for large high resolution surveys such as DESI.
 - Cheap enough to process very large simulation volumes.
 - Takes advantage of the subscale physics built into simulations.

The Halo Occupation Distribution (HOD) model

$$\langle N_{\rm gal}(M_{\rm halo}))\rangle = \langle N_{\rm cen}(M_{\rm halo}))\rangle + \langle N_{\rm sat}(M_{\rm halo}))\rangle$$
$$\langle N_{\rm cen}(M_{\rm halo})\rangle = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\log M_{\rm halo} - \log M_{\rm min}}{\sigma_{\log M}}\right) \right]$$
$$\langle N_{\rm sat}(M_{\rm halo})\rangle = \left(\frac{M_{\rm halo} - M_{\rm cut}}{M_1}\right)^{\alpha}$$

Jing, Mo & Börner (1998); Benson+ (2000); Peacock & Smith (2000); Berlind & Weinberg (2002), Zheng+ (2005)

The Halo Occupation Distribution (HOD) model

Wechsler & Tinker 2018

The lensing tension

Systematics? Modeling? Cosmology?

The lensing tension

Linder 2005:

 $\sigma_8(\gamma)$ γ --- Growth index, derived from GR

Growth rate informs underlying gravity models.

The lensing tension can be significantly remedied with more realistic HOD models

(Yuan et al. 2020b)

Assembly bias

 Assembly bias is the phenomenon when the clustering of halos/galaxies <u>at</u> <u>fixed mass</u> depends on additional properties of the halo (i.e. other than mass)

Formation time Concentration Spin Velocity dispersion ... and so on

- Early forming halos have more time to undergo mergers and tidal disruption.
- Leads to fewer but more luminous galaxies.

- Can significantly bias cosmology/HOD inference (Lange+2019).
- Observational evidence: Zentner+2014, Miyatake+2016.

Assembly bias

• Halo concentration has been the most popular marker of assembly bias.

$$c = \frac{r_{
m vir}}{r_s}$$

(

- Concentration correlates well with formation time.
- In the HOD model: $P(N_g | M, c)$.

Gao & White 2007

Environment-based secondary bias

Environment-based secondary bias

Extended HOD including secondary biases

- · Vanilla parameters.
- Generalized parameters:
 - Assembly bias based on concentration and environment.
 - Satellite radial distribution parameters.
 - Velocity bias parameters for centrals and satellites.

$$\rightarrow [M_{\text{cut}}, M_1, \sigma, \alpha, \kappa]$$

 $\rightarrow [A,A_e]$

 $\rightarrow [s, s_p]$

 $\rightarrow [\alpha_c, s_v, s_r]$

Fitting the BOSS clustering with extended HOD

(wikipedia)

- Data:
 - \circ BOSS CMASS galaxies within 0.46 < z < 0.61 (DR12).
 - Fiber-collision corrected.
- Algorithm:
 - Evolutionary global optimization routine (CMAES).

Fitting the BOSS redshift-space 2PCF

- Best fit: $\Box^2 = 50$ (d.o.f = 37).
- Preference for including both secondary biases:
 - Include A: Δ BIC = 21.
 - Include Ae: Δ BIC = 17.
 - Combined: Δ BIC = 36.

The lensing prediction

A path towards resolving the lensing tension?

Average halo mass per galaxy:

- No secondary bias: 4.1e13 Msun,
- Include A: 3.6e13 Msun,
- Include Ae: 3.7e13 Msun,
- Include both: 3.3e13 Msun.

The LOS structure of the 2PCF is pushing galaxies into lower mass halos.

What is exactly driving these secondary biases?

Concentration-based assembly bias **A**:

Other solutions to "lensing is low"?

Issues: 1) satellite fraction 80% :(

Zu Ying 2020

A positive detection of Ae

• A consistent detection of Ae across all fits:

• Ae might depend on cosmology (need more testing).

The dependence of Ae on environment definition

Splashback can explain Ae

Credit: Benedikt Diemer

Other evidence of extended baryon profiles

Amodeo et al. 2020

Current work: AbacusHOD (DESI-HOD)

- Highly Efficient
 - **Performance**: 80ms/tracer to populate a 2Gpc box on a 32 core desktop. Scalable to more cores and nodes.
 - **Optimizations**:
 - Mass-dependent subsampling.
 - Preloading halo and particle data in memory.
 - Memory in-place implementation with numba parallel.
- Feature Rich
 - HOD extensions: secondary biases, velocity biases, satellite distribution flexibilities, RSD.
 - Interface with Abacus merger tree outputs.
 - Includes fast (0.1 second) 2-point calculators.
- Multi-tracer (LRG, ELG, QSO)
 - ELG/QSO HOD based on Shadab's eBOSS fits.
 - Performance is 2x slower when ELG/QSO is enabled.

To dos

- Incorporating extended baryon profiles:
 - Leveraging the merger tree to re-merge splashback halos.
 - Develop a generalized NFW profile feature?

Applications

- DESI HOD fits (1% and then full sample) and cosmology+HOD analysis.
- Abacus Emulator:
 - 155 different cosmologies.
 - Marginalize over the extended HOD space and emulate the Bayesian evidence.
- More robust assembly bias fits. (DESI? Novel statistics?)

Novel statistics?

• Squeezed 3PCF (Yuan et al 2017, 2018).

• SZ-marked group correlation function (work in progress).

- We find strong evidence for extended HOD models with secondary biases.
- The corresponding lensing prediction is significantly more consistent with data than previous predictions.
- Redshift-space clustering offers a lot more information.
- The secondary biases have interesting implications ranging from dark matter structure, to CGM, to GR.
- Currently developing a fast extended HOD that will enable robust HOD and cosmology analyses, especially within DESI.

Credit: Johannes Lange

A negative detection of A

The concentration-based assembly bias is degenerate with sigma_8.