Evidence for Galaxy Assembly Bias in BOSS CMASS redshift-space 2PCF

Sihan Yuan, Boryana Hadzhiyska, Sownak Bose, Daniel Eisenstein, and Hong Guo

[arxiv:2010.04182]

The lensing tension

Current galaxy-galaxy lensing predictions are 20-40% higher than observation.

Systematics? Modeling? Cosmology?

The galaxy-halo connection model

• The halo occupation distribution model (HOD).

 $P(N_g|M)$, Parameters: $[M_{cut}, M_1, \sigma, \alpha, \kappa]$

- Links galaxy occupation solely to halo mass.
- Assembly bias: secondary dependencies other than mass?

Yuan et. al. 2018

Extended HOD (GRAND-HOD)

- Vanilla parameters.
- Generalized parameters:
 - Assembly bias based on concentration.
 - Satellite radial distribution parameters.
 - Velocity bias parameters for centrals and satellites.

 $\rightarrow [M_{\text{cut}}, M_1, \sigma, \alpha, \kappa]$

 $\rightarrow [A]$

 $\rightarrow [s, s_p]$

 $\rightarrow [\alpha_c, s_v, s_r]$

Yuan et. al. 2020

The lensing tension

Slide Credit: Johannes Lange

Clustering+Lensing mismatch cannot be explained by galaxy assembly bias.

The environmental assembly bias

Yuan et. al. 2020b Bose et al. 2018

Environment definition

Extended HOD with double assembly biases

- Vanilla parameters.
- Generalized parameters:
 - Assembly bias based on concentration and environment.
 - Satellite radial distribution parameters.
 - Velocity bias parameters for centrals and satellites.

$$\rightarrow [M_{\text{cut}}, M_1, \sigma, \alpha, \kappa]$$

 $\rightarrow [s, s_p]$

 $\rightarrow [\alpha_c, s_v, s_r]$

Fitting the BOSS redshift-space 2PCF

- Data:
 - \circ BOSS CMASS galaxies within 0.46 < z < 0.61 (DR12).
 - Fiber-collision corrected.
- Algorithm:
 - Evolutionary global optimization routine (CMAES).

(wikipedia)

Fitting the BOSS redshift-space 2PCF

- We get a good fit: $\Box^2 = 50$ (d.o.f = 37).
- Preference for both assembly biases:
 - Include A: Δ BIC = 21.
 - Include Ae: Δ BIC = 17.
 - Combined: Δ BIC = 36.

The lensing prediction

A path towards resolving the lensing tension?

Average halo mass per galaxy:

- No assembly bias: 4.1e13 Msun,
- Include A: 3.6e13 Msun,
- Include Ae: 3.7e13 Msun,
- Include both: 3.3e13 Msun.

The LOS structure of the 2PCF is pushing galaxies into lower mass halos.

What is exactly driving these assembly biases?

Concentration-based assembly bias **A**:

Environment-based assembly bias **Ae**:

A positive detection of Ae

• A consistent detection of Ae across all fits:

- Ae might depend on cosmology (need more testing).
- What is it tracing? Splashback?

Inflating the 2PCF bin size

Tophat Environment

Tophat, but inflated bins

Splashback can explain Ae

- Splashback would explain the scale preference.
- Splashback would explain a positive Ae.
- Splashback would explain the drop in average halo mass.
- We need to test this....

Credit: Benedikt Diemer

Credit: Johannes Lange

A negative detection of A

The concentration-based assembly bias is degenerate with sigma_8.

Other recent studies

Amodeo et al. 2020

Other recent studies

Zu Ying 2020

Summary

- We achieve a good fit on the redshift-space 2PCF with an extended HOD including two assembly bias terms.
- The inclusion of both assembly bias terms are strongly favored.
- The redshift-space 2PCF prefers to assign galaxies to lower mass halos, resulting in a lensing prediction consistent with observation.
- The environmental assembly bias shows a consistent positive detection, seems to trace some underlying processes, possibly splashback.