Cosmology and Astrophysics with Intensity Mapping

Yun-Ting Cheng (Caltech)

in collaboration with Jamie Bock, Tzu-Ching Chang, Olivier Dore (Caltech/JPL), **TIME** collaboration and **CIBER** collaboration

Berkeley BCCP Seminar, Dec 01, 2020

Robertson et al. 2010

Robertson et al. 2010

CMB z ~ 1100

Robertson et al. 2010

galaxy surveys z < 2.5

CMB z ~ 1100

Robertson et al. 2010

CMB z ~ 1100

What is Intensity Mapping (IM)?

Credit: Patrick Breysse, Kovetz et al. 2017

IM measures collective emission from a large region containing multiple sources, without spatially resolving down to galaxy scales.

- Measure the intensity fluctuation (like CMB)
- Can learn about large-scale structure, average emission properties
- Low resolution (large telescope not required)
 - -> can efficiently scan a large volume

Cosmology & Astrophysics With Intensity Mapping

Intensity Mapping for EoR Science

Line Intensity Mapping with TIME

Y.T. Cheng, T.C. Chang, J.J. Bock, C.M. Bradford, A. Cooray 2016 arXiv:1604.07833 Y.T. Cheng, T.C. Chang, J.J. Bock 2020 arXiv:2005.05341

Intensity Mapping for Galaxy Evolution

Probing Intra-Halo Light with CIBER

Y.T. Cheng + CIBER collaboration 2020a in prep.

Intensity Mapping for Cosmology & Astrophysics

Constraining Extra-galactic Background Light with SPHEREx

Y.T. Cheng & T.C. Chang 2020b in prep.

Cosmology & Astrophysics With Intensity Mapping

Intensity Mapping for EoR Science

Line Intensity Mapping with TIME

Y.T. Cheng, T.C. Chang, J.J. Bock, C.M. Bradford, A. Cooray 2016 arXiv:1604.07833 Y.T. Cheng, T.C. Chang, J.J. Bock 2020 arXiv:2005.05341

Intensity Mapping for Galaxy Evolution

Probing Intra-Halo Light with CIBER

Y.T. Cheng + CIBER collaboration 2020a in prep.

Intensity Mapping for Cosmology & Astrophysics

Constraining Extra-galactic Background Light with SPHEREx

Y.T. Cheng & T.C. Chang 2020b in prep.

Line Intensity Mapping (LIM)

- Intensity mapping with spectral line emission
- Trace the 3D structure of the universe by redshift-frequency relation

Which Lines?

Robertson et al. 2010

10

Which Lines?

Robertson et al. 2010

(Tomographic Ionized carbon intensity Mapping Experiment)

Caltech

Caltech/JPL

Jamie Bock Matt Bradford Tzu-Ching Chang Steve Halley-Dunsheath Lorenzo Moncelsi Roger O'Brient Jonathan Hunacek Yun-Ting Cheng Guochao Jason Son

ASIAA Chao-Te Li Da-Shun Wei

Arizona

Dan Marrone

Issac Trumper

Ryan Keenan

UCI Asantha Cooray

UNIVERSITY OF TORONTO Toronto Abigail Crites

RIT

RIT Mike Zemcov Victoria Butler NRAO Bade Uzgil

(Tomographic Ionized carbon intensity Mapping Experiment)

CII @ z= 5.3 ~ 8.5 (~ 200-300 GHz)

Why [C II] 158 um?

- Major coolant in ISM (brightest FIR line)
- Good tracer of star formation, complementary to 21 cm
- EoR [C II] redshifts into atmospheric window

TIME

- grating spectrometer
- ALMA prototype antenna (Kitt Peak Arizona)
- 1D line scan ~ 1 deg

Hubble UDF 11'x11'

Foregrounds in Intensity Mapping

21 cm — continuum foreground ~ $10^{5}x$ signal [C II] / CO / Lya — line blending

Line de-blending methods:

- masking
- cross correlation
- => need external catalogs

Line de-Blending With External Information

2D power spectrum anisotropy

Y.T. Cheng, T.C. Chang, J.J. Bock, C.M. Bradford, A. Cooray 2016 arXiv:1604.07833 Lidz & Taylor 2016

- 2D power spectrum of interloper lines become anisotropic upon projection
- Use 2D power spectrum shape to distinguish the lines

map-space de-blending

Y.T. Cheng, T.C. Chang, J.J. Bock 2020 arXiv:2005.05341

- Spectrum template with multi-line emission
- Fit observed spectrum (per pixel) to the template with sparse reconstruction

Cosmology & Astrophysics With Intensity Mapping

Intensity Mapping for EoR Science

Line Intensity Mapping with TIME

Y.T. Cheng, T.C. Chang, J.J. Bock, C.M. Bradford, A. Cooray 2016 arXiv:1604.07833 Y.T. Cheng, T.C. Chang, J.J. Bock 2020 arXiv:2005.05341

Intensity Mapping for Galaxy Evolution Probing Intra-Halo Light with CIBER

Y.T. Cheng + CIBER collaboration 2020a in prep.

Intensity Mapping for Cosmology & Astrophysics

Constraining Extra-galactic Background Light with SPHEREx

Y.T. Cheng & T.C. Chang 2020b in prep.

Broadband Intensity Mapping (2D)

Image Credit: NASA/JPL-Caltech

Extragalactic Background Light (EBL)

Dominguez, 2015

absolute photometry / fluctuation

Diffuse Components in Near-IR EBL

image credit: Jamie Bock, SPHEREx Collaboration

, intra-halo light (IHL)

Stars being tidally stripped out from galaxy into dark matter halo

unresolved low-z galaxies

CIBER

(Cosmic Infrared Background ExpeRiment)

Caltech/Jet Propulsion Lab (USA)

Jamie Bock Phillip Korngut Viktor Hristov Yun Ting Chen Richard Feder-Staehle

University of California Irvine (USA)

Asantha Cooray Amy Ralston Derek Wilson

Rochester Institute of Technology (USA)

Michael Zemcov Dorin Patru Priyadarshini Bangale Chi Nguyen Kevin Gates James Parkus Chris Pape

Institute of Astronomy and Astrophysics Academia Sinica (Taiwan R.O.C) Shiang-Yu Wang

Kwansei Gakuin University (Japan)

Shuji Matsuura Ryo Hashimoto Kohji Takimoto Masaki Furutani Hiroko Suzuki Arisa Kida Shota Sakai

Japan Aerospace Exploration

Agency (Japan) Takehiko Wada

Kanazawa University (Japan)

Kei Sano (Research fellow of Kwansei Gakuin University)

Astrobiology Center (Japan) Aoi Takahashi

Tokyo City University(Japan) Kohji Tsumura

Korean Astronomy and Space Science Institute (South Korea)

Dae-Hee Lee Won-Kee Park Seung-Cheol Bang

Zemcov et al. 2013

Two **Imagers** (1.1 & 1.6 um) : measure power spectrum FOV 2x2 deg, pixel size 7"x7", 1024x1024 pixels, R~2 (2nd / 3rd flight analysis: Zemcov et al. 2014)

Low Resolution Spectrometer (Matsuura et al. 2017) Narrow Band Spectrometer (Korngut et al. in prep.) 4 flights: 02/2009, 07/2010, 03/2012, 06/2013

Imager power spectrum (2nd / 3rd flight)

Imager power spectrum (2nd / 3rd flight)

Intra-Halo Light (IHL)

contributes ~ half of total light in DM halos!

Imager power spectrum (2nd / 3rd flight)

Modeling the Excess Profile

galaxy profile

- galaxy shape + IHL
- double Sersic profile

clustering: 1-halo, 2-halo

- halo model
- model from MICECAT sims
- fit a free amplitude to 1-h & 2-h template

Modeling the Excess Profile

galaxy profile

- galaxy shape + IHL
- double Sersic profile

clustering: 1-halo, 2-halo

- Halo model
- model from MICECAT sims

Stacking Samples

- 5 fields (2 deg x 2 deg)
- 1.1 um & 1.6 um bands

Name	N_{gal}	$\langle z \rangle$	$\log \langle M_* \rangle \ [M_\odot]$	$\log \langle M_h \rangle [\mathrm{M}_{\odot}]$
high-M/low-z	743	0.22	11.6	12.5
high-M/med-z	1274	0.34	11.4	12.6
high-M/high-z	10916	0.54	11.3	12.6
low-M/low-z	1645	0.24	11.1	12.0
low-M/med-z	14730	0.38	11.0	12.1
total	35795	0.40	11.1	12.3

Extended Stellar Halo

CIBER (this work):

- Near-IR: 1.1 um, 1.6 um
- z ~ 0.2–0.5
- space-based

HSC (Wang et al. 2019):

- Optical: 0.6 um (r band)
- z ~ 0–0.2
- ground-based

Illustris (Rodriguz-Gomez et al. 2016):

Hydrodynamic simulations

Purcell et al. 2007, 2008

Galaxy Groups

Gonzalez et al. 2005, 2007

Burke et al. 2005

Y.T. Cheng + CIBER collaboration 2020a in prep.

Cosmology & Astrophysics With Intensity Mapping

Intensity Mapping for EoR Science

Line Intensity Mapping with TIME

Y.T. Cheng, T.C. Chang, J.J. Bock, C.M. Bradford, A. Cooray 2016 arXiv:1604.07833 Y.T. Cheng, T.C. Chang, J.J. Bock 2020 arXiv:2005.05341

Intensity Mapping for Galaxy Evolution

Probing Intra-Halo Light with CIBER

Y.T. Cheng + CIBER collaboration 2020a in prep.

Intensity Mapping for Cosmology & Astrophysics

Constraining Extra-galactic Background Light with SPHEREx

Y.T. Cheng & T.C. Chang 2020b in prep.

SPHEREx

https://spherex.caltech.edu/

The first all-sky near-IR spectral survey

- 2024 launch
- 0.75 5 um
- R ~ 40 (0.75 3.8 um), R~110 (3.8 5 um)

- **Cosmology** f_{NL}, inflation
- Galaxy formation and evolution extragalactic background light (EBL)
- Water ice and biogenic molecules ice absorption features in stellar spectra

- Foregrounds
- Line-of-sight Projection

EBL Tomography With Cross-Correlation

Galaxy Catalogs

Cross Power Spectrum

$$C_{\ell,\text{clus}}(z) \propto b_I(z) \frac{d\nu I_{\nu}}{dz}(z) P_m(k = \frac{\ell + \frac{1}{2}}{\chi(z)}, z) \qquad \qquad C_{\ell,\text{shot}}(z) \propto \left. \frac{d\nu I_{\nu}}{dz}(z) \right|_g$$

SNR on Clustering Amplitude

SPHEREx x spectroscopic samples

SNR on Clustering Amplitude

SPHEREx x spectroscopic samples

SNR on Clustering Amplitude

SPHEREX x photometric samples

Shot Noise

shot noise — averaged spectrum of stacked sources

Y.T. Cheng & T.C. Chang 2020b in prep.

Cosmology & Astrophysics With Intensity Mapping

Intensity Mapping for EoR Science

Line Intensity Mapping with TIME

Yun-Ting Cheng ycheng3@caltech.edu

Y.T. Cheng, T.C. Chang, J.J. Bock, C.M. Bradford, A. Cooray 2016 arXiv:1604.07833 Y.T. Cheng, T.C. Chang, J.J. Bock 2020 arXiv:2005.05341

Intensity Mapping for Galaxy Evolution

Probing Intra-Halo Light with CIBER

Y.T. Cheng + CIBER collaboration 2020a in prep.

Intensity Mapping for Cosmology & Astrophysics

Constraining Extra-galactic Background Light with SPHEREx

Y.T. Cheng & T.C. Chang 2020b in prep.