Constraining reionization with the z > 5Lyman- α forest

2309.03341 - measurements 2309.05647, 2208.09013 - forecasting

Molly Wolfson (UCSB)

What is reionization?

Planck gives the midpoint: $z_{re} \sim 7.7$ Recent measurements suggest that it is not complete until z < 6

What is reionization?

A lot still unknown (driving sources, number of photons required, impact on thermal state of IGM, and more)

Some signatures of reionization in the IGM

Some signatures of reionization in the IGM

Fluctuations in the UVB can be described by λ_{mfp}

 $\boldsymbol{\lambda}_{_{mfp}}$ - the average distance ionizing photons travel before interacting with neutral hydrogen

Rapid increase signals the end of reionization

80 40

0.

-40

-80 -5.0

cMpc/h

 $\lambda_{mfp} = 5 \text{ cMpc}$

 $\lambda_{mfp} = 15 \text{ cMpc}$

1.0

log(Г_{HI}/(Г_{HI}))

Existing measurements of λ_{mfp}

Most constraining method has been from flux beyond the Lyman limit in stacked quasar spectra

Becker et al. 2021

Existing measurements of λ_{mfp}

Additional recent measurements using the optical depth CDF

Gaikwad et al. 2023

Existing measurements of λ_{mfp}

Blue and Orange points are from flux beyond the Lyman limit in stacked quasar spectra

Red points come from the the optical depth CDF

Lyman-α forest flux auto-correlation function

Probing the IGM with the Lyman- α forest:

Saturates for $\langle x_{\rm HI}(z) \rangle \gtrsim 10^{-4}$

Auto-correlation function:

$$\xi_F(\Delta v) = \langle F(v)F(v + \Delta v) \rangle$$

The fourier transform of the power spectrum

Uncorrelated gaussian noise averages out

Easy to mask out DLAs etc

Is the auto-correlation function of the Lyman- α forest sensitive to λ_{mfp} ?

UVB boxes with $L_{box} = 100 \text{ cMpc } h^{-1}$

- Method of Davies & Furlanetto 2016
- 128³ pixels

Wolfson et al. 2023

UVB boxes with L _{box} = 100 cMpc h ⁻¹	Nyx box with L _{box} = 100 cMpc h ⁻¹
 Method of Davies & Furlanetto 2016 128³ pixels 	 Hydrodynamical code designed for the Lyα forest 4096³ dark matter particles, 4096³ baryon grid cells

UVB boxes with $L_{box} = 100 \text{ cMpc } h^{-1}$	Nyx box with $L_{box} = 100 \text{ cMpc } h^{-1}$
 Method of Davies & Furlanetto 2016 128³ pixels 	 Hydrodynamical code designed for the Lyα forest 4096³ dark matter particles, 4096³ baryon grid cells

UVB boxes with $L_{box} = 100 \text{ cMpc } h^{-1}$

• Method of Davies & Furlanetto 2016

• 128³ pixels

Nyx box with $L_{box} = 100 \text{ cMpc } h^{-1}$

- Hydrodynamical code designed for the Lyα forest
- 4096³ dark matter particles, 4096³ baryon grid cells

Effect of λ_{mfp} on the auto-correlation function

Data

XQR-30 Quasars:

XQR-30 data (<u>xqr30.inaf.it</u>):

- dedicated ~250 hours of observations
- Uses VLT/X-Shooter (R ~ 8800 in the visible)
- 30 new observations of some of the most luminous z > 5.8 quasars observed
- Supplemented with 12 archival observations

Auto-correlation function from XQR-30

Wolfson et al. 2023

Auto-correlation function from XQR-30

Compare with simulations:

Measuring λ_{mfp}

Gaussian likelihood:

$$\mathcal{L} = \frac{1}{\sqrt{\det(\Sigma)(2\pi)^n}} \exp\left(-\frac{1}{2}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)^{\text{T}} \Sigma^{-1}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)\right)$$

Measuring λ_{mfp}

Gaussian likelihood:

$$\mathcal{L} = \frac{1}{\sqrt{\det(\Sigma)(2\pi)^n}} \exp\left(-\frac{1}{2}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)^{\text{T}} \Sigma^{-1}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)\right)$$

Measuring λ_{mfp}

Gaussian likelihood:

Fitting mock data at z = 5.4:

Wolfson et al. in prep.

Attempting a fit on XQR-30 data at z = 5.4

What do the constraints on λ_{mfp} Look like for all z?

- Compare <F> from the auto-correlation with what was directly measured
- Compare λ_{mfp} from the auto-correlation with the literature values
 - Why do high-z favor large λ_{mfp} ?
 - Why is z = 5.3 so precise?

What do the

140

120

٠

Zhu et al. (2023)

Gaikwad et al. (2023)

Wolfson in prep. 2023

Preliminary

What do the constraints on λ_{mfp} Look like for all z?

• How good are these fits by eye?

Attempting a fit on XQR-30 data at z = 5.7

Attempting a fit on XQR-30 data at z = 5.7 with a Gaussian prior on <F>

Attempting a fit on XQR-30 data at z = 5.3

Wolfson et al. in prep.

Can we quantify how 'good' this fit is compared to the mock data?

Attempting a fit on XQR-30 data at z = 5.3

Can we quantify how 'good' this fit is compared to the mock data?

What is going wrong with fitting the data?

$$\mathcal{L} = \frac{1}{\sqrt{\det(\Sigma)(2\pi)^n}} \exp\left(-\frac{1}{2}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)^{\text{T}} \Sigma^{-1}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)\right)$$

What is going wrong with fitting the data?

$$\mathcal{L} = \frac{1}{\sqrt{\det(\Sigma)(2\pi)^n}} \exp\left(-\frac{1}{2}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)^{\mathrm{T}} \Sigma^{-1}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)\right)$$

Does the covariance matrix vary with λ_{mfp} or <F>?

We are not only fitting the model line but also this covariance matrix structure

Can we measure the covariance matrix from the data?

Wolfson et al 2023.

Attempting a fit on XQR-30 data at z = 5.6 with the covariance matrix estimated via bootstrapping:

The bootstrap estimates are not good enough even where we have the most data

Attempting a fit on XQR-30 data at z = 5.6 with the covariance matrix estimated via bootstrapping:

Only using the diagonal of the bootstrap covariance matrix gives a good fit... but is this a valid thing to do?

Does using the diagonal of a covariance matrix estimated from bootstrap resampling the data behave statistically correctly?

What do the constraints on λ_{r} look like for all z for a diagonal covariance matrix from bootstrap resampling?

With flat priors and using all data

What do the constraints on λ_{mfp} look like for all z for a diagonal covariance matrix from bootstrap resampling?

With a gaussian prior on <F> and using all data

What physics (or in our simulation) can effect these covariance matrices?

Adding temperature fluctuations effects the covariance structure

Reionization models from Oñorbe et al. 2019

Wolfson et al. 2023

Will this significantly change measurements?

Temperature fluctuations effect on the flux:

Temperature fluctuations effect on the correlation function:

Temperature fluctuations effect on the likelihood:

Wolfson et al. 2023

What if the models and the diagonals of the covariance are the same? Inhomogeneous Flash

25000

20000

- 15000 🗵

- 10000

5000

1.2

1.0

0.4

Wolfson et al. 2023

The size of the UVB box can cause similar effects on the covariance matrix:

Small UVB boxes also suppress the boost in the models :

Wolfson et al 2023.

- Improvements in the simulation modeling
 - Need coupled hydrodynamic cosmological simulations with radiative transfer of photons in large boxes
- Improvements in the methods
 - Mock data sets (especially at high-z) are not Gaussian distributed so using a Gaussian likelihood is wrong

- Improvements in the methods
 - Mock data sets (especially at high-z) are not Gaussian distributed so using a Gaussian likelihood is wrong

- Improvements in the simulation modeling
 - Need coupled hydrodynamic cosmological simulations with radiative transfer of photons in large boxes
- Improvements in the methods
 - Mock data sets (especially at high-z) are not Gaussian distributed so using a Gaussian likelihood is wrong
 - Many sightlines at high-z are almost total absorption so computing a 2-pt statistic here may be sub-optimal (averaging with the rare transmission spikes)

- Improvements in the methods
 - Many sightlines at high-z are almost total absorption so computing a 2-pt statistic here may be sub-optimal (averaging with the rare transmission spikes)

Future Directions:

- Improvements in the simulation modeling
 - Need coupled hydrodynamic cosmological simulations with radiative transfer of photons in large boxes
- Improvements in the methods
 - Mock data sets (especially at high-z) are not Gaussian distributed so using a Gaussian likelihood is wrong
 - Many sightlines at high-z are almost total absorption so computing a 2-pt statistic here may be sub-optimal (averaging with the rare transmission spikes)
- Improvements in the data
 - High-resolution quasar spectra have access to smaller spatial scales which are sensitive to things like the thermal state of the IGM

Can you use high-resolution measurements to constrain the thermal state?

5

0

0.4

0.0

-0.2

-2000

Flux 0.2 10

-1000

Thermal state effect on the correlation function:

Fitting a mock high-resolution data set:

Multiple mock evolutions:

20 quasar observations

Keck Observatory archive has 56 unique z >4.5 quasars observed with HIRES

Future Directions:

- Improvements in the simulation modeling
 - Need coupled hydrodynamic cosmological simulations with radiative transfer of photons in large boxes
- Improvements in the methods
 - Mock data sets (especially at high-z) are not Gaussian distributed so using a Gaussian likelihood is wrong
 - Many sightlines at high-z are almost total absorption so computing a 2-pt statistic here may be sub-optimal (averaging with the rare transmission spikes)
- Improvements in the data
 - High-resolution quasar spectra have access to smaller spatial scales which are sensitive to things like the thermal state of the IGM

Summary:

- The auto-correlation function provides a new way to competitively constrain the evolution with redshift of λ_{mfp} with existing data
- Practical considerations make the auto-correlation function a particularly useful statistic
 - Ex: not needing to model the noise or calculate the window function from DLA mask
- Measurement of λ_{mfp} from XQR-30 data is ongoing
- The covariance matrix of the auto-correlation function (4th order statistic) contains a lot of information on the high-z universe
 - We can learn additional information about the IGM by improving our models to match the covariance fluctuations
- Need more detailed physical simulations that explore this parameter space
 - Explore more reionization histories in sufficient box sizes