# Deep Learning for High Energy Physics



Daniel Whiteson, UC Irvine Oct 2019, LBL

## What is Deep Learning?



What society thinks I do



What my friends think I do



What other computer scientists think I do



What mathematicians think I do



What I think I do



What I actually do

# Unambiguous data



Ok, but see: <a href="http://cerncourier.com/cws/article/cern/54388">http://cerncourier.com/cws/article/cern/54388</a>

# Making a new particle



# Backgrounds



## Why statistics?



#### The nature of our data demands it.

# Hypothesis testing

To search for a new particle, we compare the predictions of two hypotheses:



# Hypothesis testing

To search for a new particle, we compare the predictions of two hypotheses:



2.



### Example



#### Number of Events

A threshold makes sense. Choice of position balances false vs missed discovery

## More complicated



## Neyman-Pearson

# NP lemma says that the best decision boundary is the likelihood ratio:

$$\frac{P(x|H_1)}{P(x|H_0)} > k_{\alpha}$$

(Gives smallest missed discovery rate for fixed false discovery rate)

## What does this do?

### Finds a region in variable space



(K. Cranmer)

## No problem

### Fairly straightforward

if you can calculate

 $\frac{P(x|H_1)}{P(x|H_0)}$ 

or generally

P(data | theory)

# Hypothesis Testing

Sometimes this is easy



# Hypothesis Testing



Which can tell us which hypothesis is preferred via a likelihood ratio:

| L <sub>SM+X</sub> | P(data   SM+X) |  |
|-------------------|----------------|--|
| L <sub>SM</sub> = | P(data   SM)   |  |

### In general

We have a good understanding of all of the pieces

Do we have

P(data | theory)?



## In general

### What would

### P(data | theory)

look like?



### The dream

#### p(hard scatter products M | theory)



diagram 1

Theory well defined automatic calculators exist for almost any (B)SM theory

### The dream

#### p(hard scatter products M| theory)



## The nightmare

### p(data | final-state particles P)

x p(final state particles P| showered particles S)

x p(showered particles S|hard scatter products M)

<u>We have</u>: solid understanding of microphysics <u>We need</u>: analytic description of high-level physics

## The solution

<u>We have</u>: solid understanding of microphysics <u>We need</u>: analytic description of high-level physics <u>But</u>: only heuristic lower-level approaches exist

Iterative simulation strategy, no overall PDF

#### Iterative approach

- (1) Draw events from p(M|theory)
- (2) add random showers
- (3) do hadronization
- (4) simulate detector

## The solution

<u>We have</u>: solid understanding of microphysics <u>We need</u>: analytic description of high-level physics <u>But</u>: only heuristic lower-level approaches exist

Iterative simulation strategy, no overall PDF

#### <u>What do we get</u>

Arbitrarily large samples of events drawn from p(data|theory), but not the PDF itself



# The problem

Don't know PDF, have events drawn from PDF



### MC events to PDF

### Simple approach : histogram



## Curse of Dimensionality

How many events do you need to describe a 1D distribution? O(100)

An n-D distribution?

O(100<sup>n</sup>)



## The nightmare

### f(data | final-state particles P)

x f(final state particles P| showered particles S)

x f(showered particles S|hard scatter products M)

"data" is a 100M-d vector!

## The nightmare

### f(data | final-state particles P)

× f(final stat

x f(showered



## Task for ML

Find a function:  $f(\bar{x}): \mathrm{I\!R}^N \to \mathrm{I\!R}^1$ which contains the same hypothesis testing power

CIS

 $\frac{P(x|H_1)}{P(x|H_0)} > k_{\alpha}$ 

### Neural networks

Strategy:

$$f(\bar{x}) : \mathbb{R}^N \to \mathbb{R}^1$$

Build f(x)=y(x) out of a pile of convoluted mini-functions

$$y(\vec{x}) = h\left(w_0 + \sum_{i=1}^n w_i x_i\right)$$

here h() is a non-linear activation function and the w factors are unknown parameters

### Neuron

#### Example activation function



## Simple visualization



# Finding good weights

### <u>We have</u>

a weight space a quality metric

$$y(\vec{x}) = h \left( w_0 + \sum_{i=1}^n w_i x_i \right)$$
$$E(w)$$

### <u>We need</u>

### to find the max quality (or min error)

### Search the space!

## How complex?

Essentially a functional fit with many parameters



#### <u>Single hidden layer</u>

In theory any function can be learned with a single hidden layer.

But might require very large hidden layer

## Neural Networks

Essentially a functional fit with many parameters



#### <u>Problem</u>:

Networks with > 1 layer are very difficult to train.

#### Consequence:

Networks are not good at learning non-linear functions. (like invariant masses!)

#### In short:

Can't just throw 4-vectors at NN.
# Search for Input

#### ATLAS-CONF-2013-108

#### Can't just use 4v

#### Can't give it too many inputs

Painstaking search through input feature space.

| Variable                                  | VBF                             |                                 |                            | Boosted                         |                                 |                              |
|-------------------------------------------|---------------------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|------------------------------|
| variable                                  | $\tau_{\rm lep} \tau_{\rm lep}$ | $\tau_{\rm lep} \tau_{\rm had}$ | $	au_{ m had}	au_{ m had}$ | $\tau_{\rm lep} \tau_{\rm lep}$ | $\tau_{\rm lep} \tau_{\rm had}$ | $	au_{\rm had}	au_{\rm had}$ |
| $m_{\tau\tau}^{MMC}$                      | •                               | •                               | •                          | •                               | •                               | •                            |
| $\Delta R(\tau, \tau)$                    | •                               | •                               | •                          |                                 | •                               | •                            |
| $\Delta \eta(j_1, j_2)$                   | •                               | •                               | ٠                          |                                 |                                 |                              |
| $m_{j_1, j_2}$                            | •                               | •                               | •                          |                                 |                                 |                              |
| $\eta_{j_1} 	imes \eta_{j_2}$             |                                 | •                               | •                          |                                 |                                 |                              |
| $p_{\rm T}^{\rm Total}$                   |                                 | •                               | •                          |                                 |                                 |                              |
| sum p <sub>T</sub>                        |                                 |                                 |                            |                                 | •                               | •                            |
| $p_{\rm T}(\tau_1)/p_{\rm T}(\tau_2)$     |                                 |                                 |                            |                                 | •                               | •                            |
| $E_{\rm T}^{\rm miss}\phi$ centrality     |                                 | •                               | •                          | •                               | •                               | •                            |
| $x_{\tau 1}$ and $x_{\tau 2}$             |                                 |                                 |                            |                                 |                                 | •                            |
| $m_{\tau\tau,j_1}$                        |                                 |                                 |                            | •                               |                                 |                              |
| $m_{\ell_1,\ell_2}$                       |                                 |                                 |                            | •                               |                                 |                              |
| $\Delta \phi_{\ell_1,\ell_2}$             |                                 |                                 |                            | •                               |                                 |                              |
| sphericity                                |                                 |                                 |                            | •                               |                                 |                              |
| $p_{\mathrm{T}}^{\ell_1}$                 |                                 |                                 |                            | •                               |                                 |                              |
| $p_{\rm T}^{f_1}$                         |                                 |                                 |                            | •                               |                                 |                              |
| $E_{\rm T}^{\rm miss}/p_{\rm T}^{\ell_2}$ |                                 |                                 |                            | •                               |                                 |                              |
| m <sub>T</sub>                            |                                 | •                               |                            |                                 | •                               |                              |
| $\min(\Delta \eta_{\ell_1 \ell_2, jets})$ | •                               |                                 |                            |                                 |                                 |                              |
| $j_3 \eta$ centrality                     | •                               |                                 |                            |                                 |                                 |                              |
| $\ell_1 \times \ell_2 \eta$ centrality    | •                               |                                 |                            |                                 |                                 |                              |
| $\ell \eta$ centrality                    |                                 | •                               |                            |                                 |                                 |                              |
| $\tau_{1,2} \eta$ centrality              |                                 |                                 | •                          |                                 |                                 |                              |

Table 3: Discriminating variables used for each channel and category. The filled circles identify which variables are used in each decay mode. Note that variables such as  $\Delta R(\tau, \tau)$  are defined either between the two leptons, between the lepton and  $\tau_{had}$ , or between the two  $\tau_{had}$  candidates, depending on the decay mode. 37

# Deep networks



# Real world applications



**Head turn:** DeepFace uses a 3-D model to rotate faces, virtually, so that they face the camera. Image (a) shows the original image, and (g) shows the final, corrected version.

# Paper

| nature<br>communications                                                                                                                                                                                                                        |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ARTICLE<br>Received 19 Feb 2014 Accepted 4 Jun 2014 Published 2 Jul 2014 DOI: 10.1038/new<br>Searching for exotic particles in his<br>physics with deep learning<br>P. Baldi <sup>1</sup> , P. Sadowski <sup>1</sup> & D. Whiteson <sup>2</sup> | gh-energy |

#### arXiv: 1402.4735

# Benchmark problem



Can deep networks automatically discover useful variables?

#### <u>21 Low-level vars</u> jet+lepton mom. (3x5) missing ET (2) jet btags (4)

Not much separation visible in 1D projections



#### <u>7 High-level vars</u> m(WWbb) m(Wbb) m(bb)

hor h  $H^0$  $\boldsymbol{g}$ b b  $W^+$ 00000  $\overline{t}$  $\overline{b}$ 

m(bjj) m(jj) m(lv) m(blv)



#### <u>7 High-level vars</u> m(WWbb) m(Wbb) m(bb)

m(bjj) m(jj) m(lv) m(blv)





Fraction of Events

Fraction of Events

0.1

100

200

300 400 M<sub>bh</sub> [GeV]

0.2

0.









# Standard NNs





### Deep Networks





<u>Results</u> Lo+hi = lo.

#### <u>Conclude:</u> DN can find hi-level vars.

Hi-level vars do not have all info are unnecessary

## Deep Networks



## The Als win



### Results

Identified example benchmark where traditional NNs fail to discover all discrimination power.

Adding human insight helps traditional NNs.

Deep networks succeed without human insight. Outperform human-boosted traditional NNs.

# What is possible?







# What is possible?





Skip more steps with ML?

# Or this?





Improve each step with ML?

### Jets

#### Jet Substructure Classification in High-Energy Physics with Deep Neural Networks

Pierre Baldi,<sup>1</sup> Kevin Bauer,<sup>2</sup> Clara Eng,<sup>3</sup> Peter Sadowski,<sup>1</sup> and Daniel Whiteson<sup>2</sup>

<sup>1</sup>Department of Computer Science, University of California, Irvine, CA 92697 <sup>2</sup>Department of Physics and Astronomy, University of California, Irvine, CA 92697 <sup>3</sup>Department of Chemical and Biomolecular Engineering, University of California, Berkeley CA 94270 (Dated: April 12, 2016)



### Jet substructure

#### LL variables

#### HL variables



# Jet tagging





# What is it doing?

#### Our low-level (LL) data are often high-dim



We can calculate likelihood ratios in the low-dim HL space often using MC techniques But HL doesn't always capture the information

# Yet we prefer HL

### If HL data includes all necessary information...

- It is easier to understand
- Its modeling can be verified
- Uncertainties can be sensibly defined
- It is more compact and efficient
- LL -> HL is physics, so we like it.

# Our question

How has the DNN found its solution? What can we learn from it?

#### <u>Residual knowledge:</u>

Is there a **new** HL variable? Can it reveal physics?

Translating complete solutions: What is the structure of its solution? Has it just rediscovered and optimized the existing HL vars?



# Learning from ML



Use LL analysis as a probe, not a final product.

### Hows

### I. Define space of possible human solutions

- provides context for NN solution
- defines problem
- does NN live in this space?
- Can it be compactly represented?
- Yes or No are both interesting!

$$= \sum_{a} \sum_{b} \sum_{c} z_{a} z_{b} z_{c} \theta_{ab} \theta_{ac} \theta_{bc}^{2}$$

$$z_i = rac{p_{T_i}}{\sum_i p_{T_j}}$$

### Hows

### I. Define space of possible human solutions

- provides context for NN solution
- defines problem
- does NN live in this space?
- Can it be compactly represented?
- Yes or No are both interesting!

#### II. Define mapping metric

- how do you compare two solutions?
- can't use functional identity or linear correlation

### **Discriminant Similarity**

#### **Function sameness**

Complete equivalence not the idea

Any 1:1 transformation of function has no impact in our context

Only care about the ordering of points not the actual function values



### Discriminant ordering



Consider how two functions treat a pair of points

 $\begin{array}{l} f(x_{sig}) - f(x_{bg}) \\ g(x_{sig}) - g(x_{bg}) \end{array}$ 

Do these have the same sign?

### Discriminant ordering



Evaluate how often they give a bg-sig pair the same ordering.

$$DO(x, x') = \Theta\Big(\big(f(x) - f(x')\big)\big(g(x) - g(x')\big)\Big)$$

Sample the space.

ADO = 
$$\int dx dx' p_{sig}(x) p_{bkg}(x') DO(x, x').$$

# The problem



Two approaches: (1) find the gap (2) build from scratch

# Find the gap



### It works!



# Build from scratch



# Preliminary

#### A single point <u>in this space:</u>

Is very similar to NN(LL) sol

Captures most of performance of HL sol

Adding more points approaches the fulls solution.


# Muon isolation



#### **Problem**

Jet can be soft, not reconstructed Jets are strongly produced, large background

## Muon isolation



Muons from jets



Little cal deposition



Large cal deposition



# Muon isolation

#### Isolated muons

#### Standard Approach

Calculate "isolation" Energy in a cone around muon.

#### Muons from jets



$$I_{\mu}(R_0) = \sum_{R < R_0} \frac{p_{\mathrm{T}}^{\mathrm{calo}}}{p_{\mathrm{T}}^{\mathrm{muon}}}$$



### Isolation



### More isolation



### Most isolation



# What can ML do?



# Close the gap?



### Information



### Conclusions

#### <u>Deep Learning is a powerful new tool</u> offers faster learning of nonlinear functions

### <u>We have many appropriate tasks in HEP</u> traditional heuristics should be re-examined

<u>No replacement for human intelligence</u> garbage in will still give garbage out