Controlling Systematics in Large-Scale Structure Surveys

Noah J. Weaverdyck University of Michigan *nweaverd@umich.edu*

Jan 26, 2021

Lawrence Berkeley National Laboratory

Outline

- Background
- Mitigation methods: insights from a common framework
- Simulated comparison
- Outlook

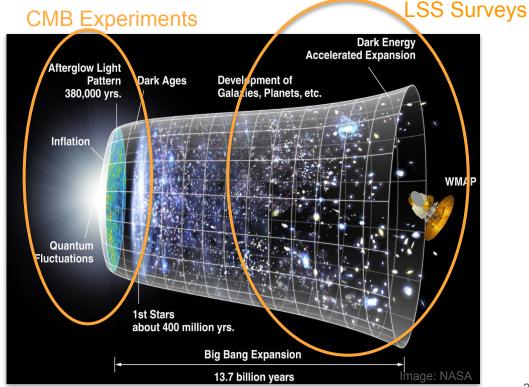
Largely based on Weaverdyck & Huterer (2007.14499)

Some other work not covered in this talk:

- Rapid and generic systematics testing via importance sampling
- Small-scale modeling challenges for constraining inflation via the spectral runnings
- Vetting MCMC samplers for cosmological inference and model testing

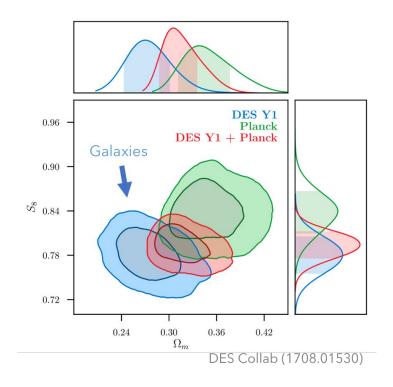
Large-scale structure (LSS) surveys

- Map "late-time" density fluctuations
- Complement primordial fluctuations from CMB
- Probe expansion history and growth of structure; dark energy, neutrino mass, primordial non-Gaussianity



LSS surveys

- Primary observables:
 - \circ Galaxy number density \rightarrow galaxy clustering
 - $\circ \quad \text{Galaxy shapes} \rightarrow \text{weak lensing}$
- Now competitive with CMB
- LSST, DESI, Roman, SphereX...
 Large number densities → small statistical error
 - Control of systematics paramount to discover new physics

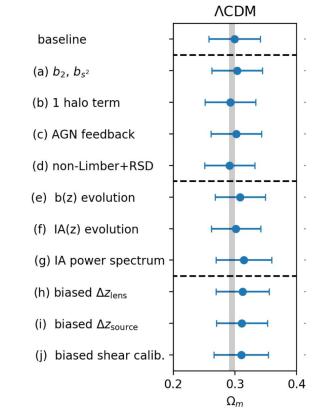


LSS systematics

- Galaxy bias
- Small-scale modeling (non-linear Pk)
- Intrinsic alignments
- Photo-z errors

• Spatial systematics

• Modify selection function: map-level

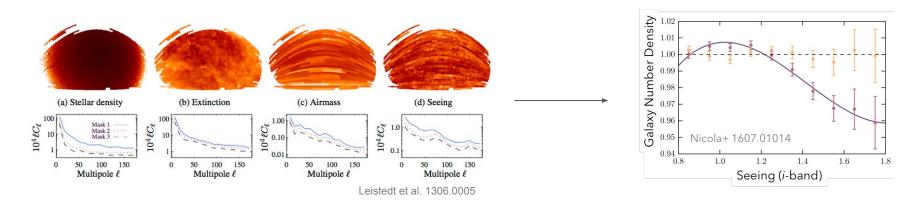


Krause et al. (DES) 1706.09359

Spatial systematics

Observed galaxy field ≠ truth

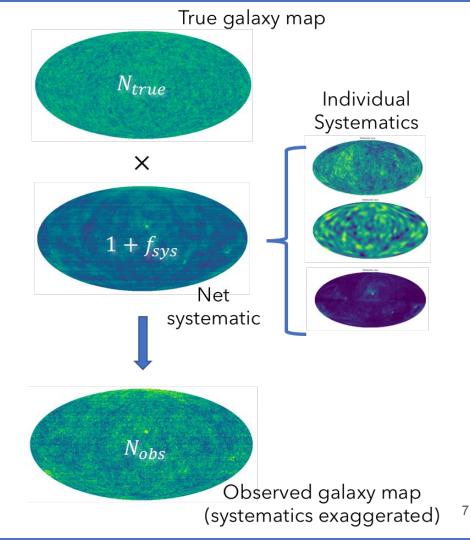
- Astrophysical (stellar contamination, dust extinction, ...)
- Observing conditions (seeing, sky brightness, ...),
- Instrumental (flux calibration, source detection algorithms, ...)



Spatial systematics

• Spatially dependent screen (*f*_{sys}) modulates observed galaxy density

 Result: density maps biased! (and 2-pt functions, 3-pt, ...)

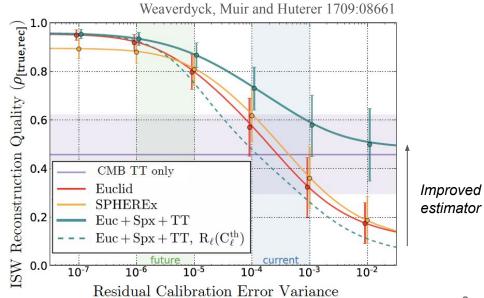


Spatial systematics: impact on ISW

• First PhD project:

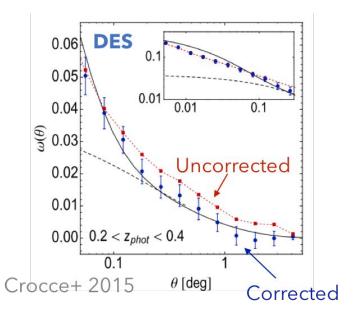
assess control needed for accurate Integrated Sachs Wolfe effect (ISW)

- Leading contribution to CMB at large scales, important for DE/MG
- Infer from x-correlation with LSS
- Optimization, improved estimator for upcoming LSS surveys



How to control systematics?

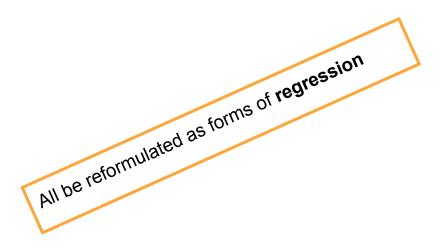
- Most common: use *systematic templates*, which trace potential contamination
 - Mask extreme regions
 - Estimate and correct for contamination (also: Balrog, Obiwan)
- Effects can be large
 - E.g. ELG and QSO densities in DESI imaging: ~10% variation after aggressive masking (Kitanidis et al. 1911.05714)
- Approaches varied, mostly ad hoc
 - Weaverdyck & Huterer (2007.14499): compare common methods, establish interpretive framework, improvements



How to control systematics?

Prominent methods investigated:

- Mode (De)Projection (e.g. HSC, SDSS QSOs)
- Multiple Linear Regression (e.g. KiDS LRGs, CFHTLenS)
- Template Subtraction (e.g. BOSS LRGs)
- DES-Y1 weighting (DES LRGs)
- "E.Net"
 "Forward Selection"



Mode (De)Projection

- Template map *t:* Marginalize over *additive* contaminant to overdensity
- *pseudo*-Cl version developed by Elsner+ 2016
 Avoids N_{pix} x N_{pix} inversion
- Expanded to spin-2 fields
 - Public code NaMaster for LSST (Alonso+ 2018)
- Equivalent to OLS regression + step to debias Cl

 $\delta_{\rm obs} \approx \delta_{\rm true} + \alpha t$ Template map Observed overdensity map Leistedt+ 2015 Bin 4 / Bin 4 40 Uncorrected 37 $10^4~\ell C_\ell$ 24 Alt. Mask 16 8 Mode Projected 25 50 75 100 125 l

Template map

Mode (De)Projection

$$\hat{\delta} = F \delta_{\text{obs}}$$

$$= \left[\lim_{\beta \to \infty} \left(I + \beta t t^{\dagger} \right)^{-1} \right] \delta_{\text{obs}}$$

$$= \left[I - t (t^{\dagger} t)^{-1} t^{\dagger} \right] \delta_{\text{obs}}$$

$$\hat{\delta} = \delta_{\text{obs}} - t \hat{\alpha}$$
Appendix the set in the set of the set of

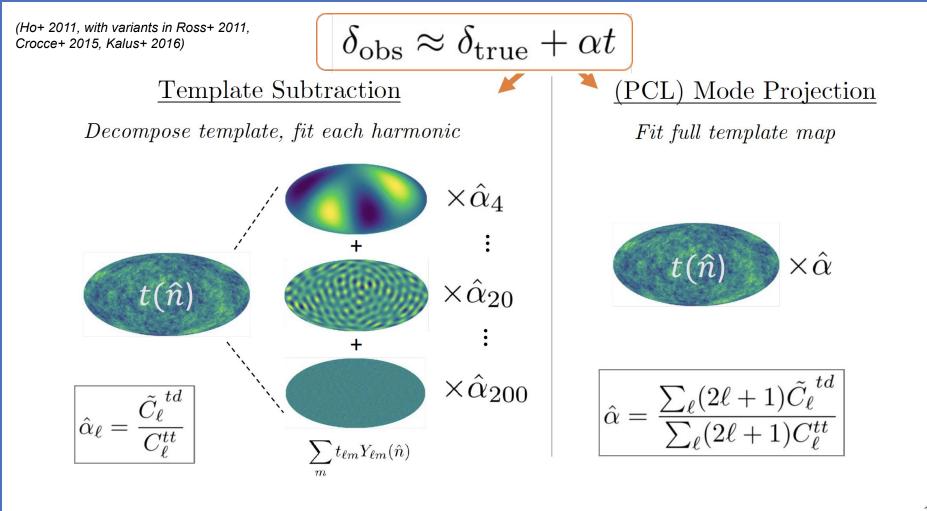
MP estimate of contamination coefficient α Is MLE, *assuming*:

$$\delta \sim \mathcal{N}(0, \, \sigma^2 I)$$

i.e.
$$\hat{\alpha} = \operatorname{argmin}_{\alpha} ||\delta_{obs} - T\alpha||^2$$

$$\delta_{\rm obs} \approx \delta_{\rm true} + \alpha t$$

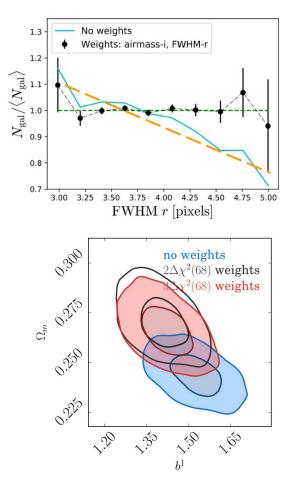
Multiple systematic templates: $t \to T \mid (N_{pix} \times N_{tpl})$ $\begin{array}{c|c} y = X\beta + \epsilon \\ \hat{\beta} = (X^{\dagger}X)^{-1}X^{\dagger}y \end{array} \begin{array}{c} \text{OLS to predict y} \\ \text{from X} \end{array}$ $y = X(X^{\dagger}X)^{-1}X^{\dagger}y + \hat{\epsilon}$ $\delta_{\rm obs} = T [T^{\dagger}T]^{-1} T^{\dagger} \delta_{\rm obs} + \hat{\delta}$ Actually care about residuals and their clustering



"Weights" method (DES-Y1)

- Series of 1D, binned regressions on each template, iteratively reweight galaxies
- Pros vs OLS methods:
 - Covariance from mocks,
 - Significance threshold to control overfitting
- <u>Cons vs OLS methods</u>:
 - Only detect marginal relationships
 - Computation and time intensive (~1 day)

(Rodriquez-Monroy+ (in prep) Elvin-Poole+ 2018, Ross+ 2011)



Elastic Net Weighting

- Regression extension: form of regularization (Zou & Hastie 2005)
- Incorporate template selection, operate in full-D space

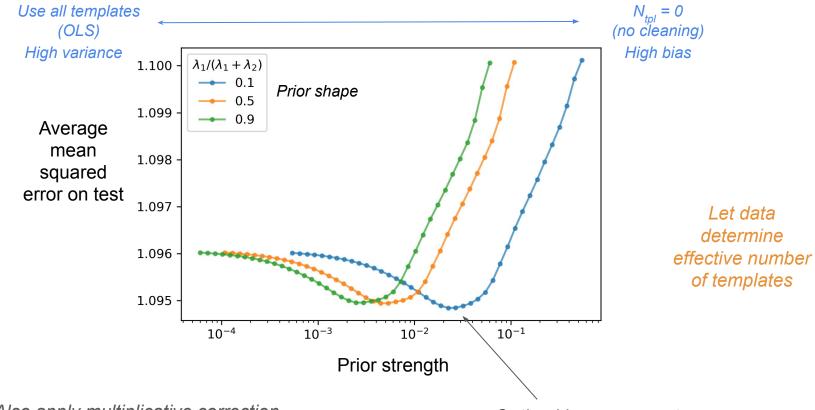
$$\hat{\alpha} = \operatorname{argmin}_{\alpha} \left(||\delta_{obs} - T\alpha||^{2} + \lambda_{1} ||\alpha||_{1} + \lambda_{2} ||\alpha||_{2}^{2} \right)$$

$$\stackrel{OLS \text{ penalty}}{OLS \text{ penalty}} \quad \begin{array}{c} \text{Sparsity prior} \\ (LASSO) \end{array} \quad \begin{array}{c} \text{Regularization} \\ (Ridge) \end{array}$$

$$\stackrel{In terms of}{Maximum Posterior Estimate,} \quad \begin{array}{c} Gaussian \\ Likelihood \end{array} \quad \begin{array}{c} Laplace \\ prior \text{ on } \\ coefficients \end{array} \quad \begin{array}{c} Gaussian \\ prior \text{ on } \\ coefficients \end{array}$$

In practice, select $\{\lambda_1, \lambda_2\}$ through cross-validation (trained on subsets of the data)

Elastic Net Weighting



Also apply multiplicative correction

Optimal hyperparameters

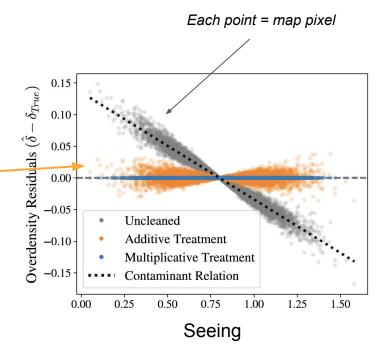
Multiplicative Correction

$$1 + \delta_{\rm obs} = (1 + \delta_{\rm true})(1 + f_{\rm sys})\gamma$$

 $\delta_{\rm obs} \approx \delta_{\rm true} + f_{\rm sys} + \delta_{\rm true} f_{\rm sys}$

- Additive estimates (MP, EN, OLS...) leave residual scatter in map
 - Contaminant to small-scale power
- Remove with simple multiplicative correction

$$\hat{\delta} = \underbrace{\frac{\delta_{\rm obs} - \hat{f}_{\rm sys}}{1 + \hat{f}_{\rm sys}}}_{\text{1} + \hat{f}_{\rm sys}}$$

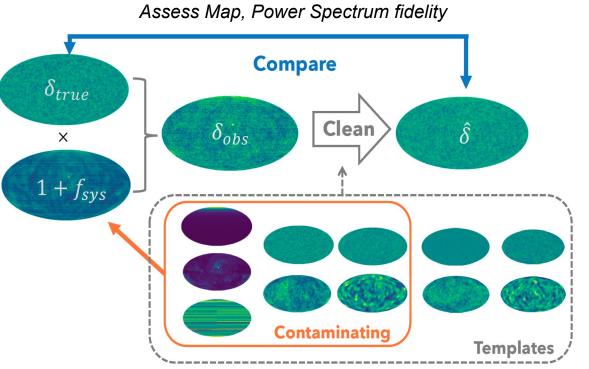


Simulation Pipeline

- DES-Y5
- 5 z-bins
- Results not strongly sensitive to survey specs

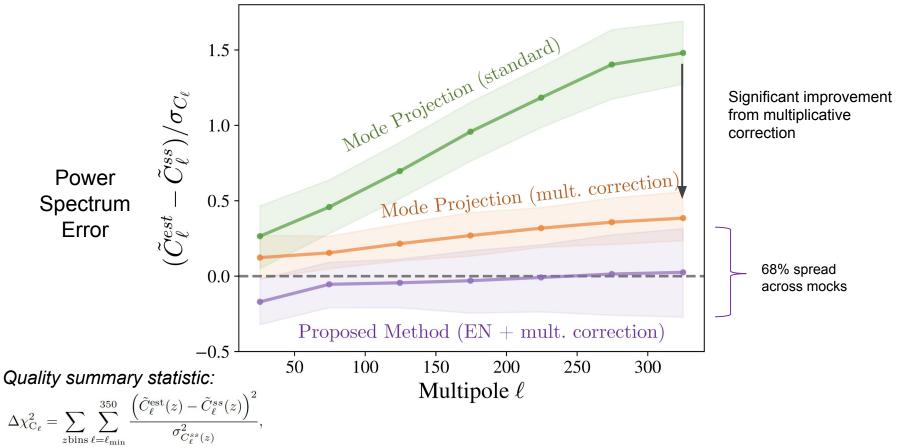
Templates:

- Gaussian realizations
 - $C_{\ell} \propto (\ell + 1)^{-p} \qquad p \in \{0, 1, 2\}$
- Static (Dust, scanning strategy, etc)



Note: Methods applicable to any contaminated signal with templates. Here galaxy clustering, with signal = galaxy overdensity. Generically: $\delta_{true} \rightarrow s$, $\delta_{obs} \rightarrow d_{obs}$

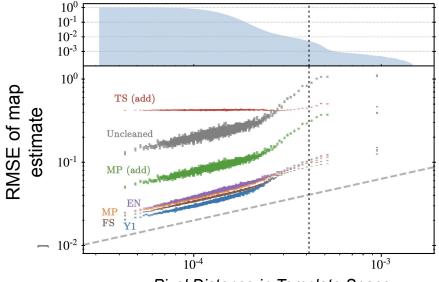
Importance of Multiplicative Correction



Importance of Data-driven Template Selection 192 cleaning templates 8 systematics = ~19 templates to 2nd order Uncleaned Uncleaned Power Spectrum Error $(\Delta \chi^2_{Cl})$ Tpl Sub (add) TS (add) Mod Proj (add) Mod Proj Elastic Net Forw Select MP (add) DES-Y1 $\Delta \chi^2 = 1$ MP EN FS Underfitting Overfitting EN and DES-Y1 80 methods robust 40 2004 8 20 $\left(\tilde{C}_{\ell}^{\text{est}}(z) - \tilde{C}_{\ell}^{ss}(z)\right)^2$ to overfitting Number of Systematic Templates Used 350 $\Delta \chi^2_{\rm C_{\ell}} =$ $\sigma^2_{C_\ell^{ss}(z)}$ 20 $z \text{bins} \ell = \ell_{\min}$

Further development

- Mask optimization with template map-statistics
- Scale-optimized cleaning
 - Harmonic prewhitening
 - Maximize S/N for cosmology
- Systematics mitigation for primordial non-Gaussianity (*f*_{NL})
 - Key target of LSS
 - Cleaning large scales *crucial* (e.g. Castorina et al 2019)



Pixel Distance in Template Space

Outlook

- Common framework unleashes new, powerful tools for systematics mitigation
 - Supervised learning/regression with *residuals* and clustering as signal of interest
- Corrections at *both* map and 2-pt function level
- Mask is important
 → rapid mitigation enables iteration
- Template selection should be *data-driven*
 - Self-calibrated sparsity + shrinkage priors work well!

Thank you!

MP Assumptions on Noise

• True clustering signal = regression "noise"

Only optimal if clustering signal

- 1) Gaussian
- 2) Diagonal
- 3) Flat

Can estimate α in pixel space or harmonic space $\hat{\alpha} = [T^{\dagger}T]^{-1}T^{\dagger}\delta_{obs}$

Diagonalize and optimally
weight in harmonic space

$$\hat{\alpha} = \frac{\sum_{\ell=0}^{\ell_{\max}} (2\ell+1) \tilde{C_{\ell}}^{td} / C_{\ell}^{ss}}{\sum_{\ell=0}^{\ell_{\max}} (2\ell+1) \tilde{C_{\ell}}^{tt} / C_{\ell}^{ss}}$$

Pixel Space Harmonic Space $[\delta_{obs}]_{\ell m}$ Data $\delta_{obs}(\hat{n}_i)$ Dims of T $N_{pix} \times N_{tpl}$ (real) $N_{\ell m} \times N_{t p l}$ (complex) **Regression Noise (additive)** $\delta_{\ell m}$ $\delta(\hat{n}_i)$ Gaussian Yes Approx. (~lognormal) Diagonal No Yes Flat Yes No

 $(d_{\rm obs})'_{\ell m} = (d_{\rm obs})_{\ell m} / \sqrt{C_{\ell}^{ss}}.$

 $(t_i)'_{\ell m} = (t_i)_{\ell m} / \sqrt{C_\ell^{ss}},$

Impact of pixel covariance *Minor compared to methodological differences*.

No method particularly susceptible to Gaussian assumption

