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Outline

● Background

● Mitigation methods: insights 
from a common framework

● Simulated comparison

● Outlook
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Largely based on
Weaverdyck & Huterer (2007.14499)

Some other work not covered in this talk:

● Rapid and generic systematics 
testing via importance sampling

● Small-scale modeling challenges 
for constraining inflation via the 
spectral runnings

● Vetting MCMC samplers for 
cosmological inference and model 
testing



Large-scale structure (LSS) surveys

● Map “late-time” density 
fluctuations

● Complement primordial 
fluctuations from CMB

● Probe expansion history and 
growth of structure; 
dark energy, neutrino mass, 
primordial non-Gaussianity

Image: NASA

CMB Experiments LSS Surveys
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LSS surveys

● Primary observables:
○ Galaxy number density → galaxy clustering
○ Galaxy shapes → weak lensing 
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● Now competitive with CMB

● LSST, DESI, Roman, SphereX... 
Large number densities → small 
statistical error
○ Control of systematics paramount to 

discover new physics



● Galaxy bias

● Small-scale modeling (non-linear Pk)

● Intrinsic alignments

● Photo-z errors

● Spatial systematics
○ Modify selection function: map-level

LSS systematics
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Krause et al. (DES) 1706.09359



Spatial systematics

Observed galaxy field ≠ truth

● Astrophysical (stellar contamination, dust extinction, ...)
● Observing conditions (seeing, sky brightness, ...),
● Instrumental (flux calibration, source detection algorithms, ...)
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Leistedt et al. 1306.0005



● Spatially dependent screen (𝑓𝑠𝑦𝑠) 
modulates observed galaxy density

● Result: density maps biased!
(and 2-pt functions, 3-pt, …)
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Spatial systematics



Spatial systematics: impact on ISW

● First PhD project: 
assess control needed for accurate Integrated Sachs Wolfe effect (ISW)

● Leading contribution to CMB at
large scales, important for DE/MG

● Infer from x-correlation with LSS

● Optimization, improved estimator
for upcoming LSS surveys
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Weaverdyck, Muir and Huterer 1709:08661

Improved
estimator



● Most common: use systematic templates, which 
trace potential contamination

○ Mask extreme regions
○ Estimate and correct for contamination

(also: Balrog, Obiwan)

● Effects can be large
○ E.g. ELG and QSO densities in DESI imaging: ~10% 

variation after aggressive masking (Kitanidis et al. 
1911.05714)

● Approaches varied, mostly ad hoc
○ Weaverdyck & Huterer (2007.14499): 

compare common methods, establish interpretive framework, 
improvements

How to control systematics?
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How to control systematics?

Prominent methods investigated:

● Mode (De)Projection (e.g. HSC, SDSS QSOs)

● Multiple Linear Regression (e.g. KiDS LRGs, CFHTLenS)

● Template Subtraction (e.g. BOSS LRGs)

● DES-Y1 weighting (DES LRGs)

● “E.Net”

● “Forward Selection”
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New
All be reformulated as forms of regression



Mode (De)Projection

● Template map t: 
Marginalize over additive contaminant to overdensity

● pseudo-Cl version developed by Elsner+ 2016
○ Avoids Npix x Npix inversion 

● Expanded to spin-2 fields
○ Public code NaMaster for LSST 

(Alonso+ 2018)

● Equivalent to OLS regression + step to debias Cl

Template map
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Observed 
overdensity map



Mode (De)Projection
Template map

OLS to predict y 
from X
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Multiple systematic templates:

Actually care about residuals and 
their clustering

MP estimate of contamination coefficient 𝜶
Is MLE, assuming:

i.e.

Map 
estimate
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(Ho+ 2011, with variants in Ross+ 2011, 
Crocce+ 2015, Kalus+ 2016)



“Weights” method (DES-Y1)

● Series of 1D, binned regressions on each 
template, iteratively reweight galaxies

● Pros vs OLS methods: 
- Covariance from mocks,
- Significance threshold to control overfitting

● Cons vs OLS methods: 
- Only detect marginal relationships
- Computation and time intensive (~1 day)

(Rodriquez-Monroy+ (in prep) 
Elvin-Poole+ 2018, Ross+ 2011)
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Elastic Net Weighting

● Regression extension: form of regularization (Zou & Hastie 2005)
● Incorporate template selection, operate in full-D space

Gaussian 
Likelihood

Laplace 
prior on 

coefficients

Gaussian 
prior on 

coefficients

In terms of 
Maximum Posterior Estimate, 

equivalent to: 

In practice, select {𝜆1,𝜆2} through cross-validation
(trained on subsets of the data)
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Elastic Net Weighting

16Optimal hyperparameters

Average 
mean 

squared 
error on test 

Prior shape

Prior strength

Use all templates
(OLS)

Ntpl = 0
(no cleaning)

High variance High bias

Also apply multiplicative correction

Let data 
determine 

effective number 
of templates



Multiplicative Correction

● Additive estimates (MP, EN, OLS...) leave 
residual scatter in map
○ Contaminant to small-scale power

● Remove with simple multiplicative correction
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Seeing     

Each point = map pixel

Next → compare methods on simulation



Simulation Pipeline
● DES-Y5
● 5 z-bins
● Results not strongly 

sensitive to survey specs

Templates:
● Gaussian realizations

● Static (Dust, scanning 
strategy, etc) Note: Methods applicable to any contaminated signal with templates. Here 

galaxy clustering, with signal = galaxy overdensity.
Generically:   𝛿true → s,    𝛿obs→ dobs

Assess Map, Power Spectrum fidelity
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Power
Spectrum

Error

68% spread 
across mocks

Significant improvement 
from multiplicative 
correction
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Importance of Multiplicative Correction

Quality summary statistic:



Importance of Data-driven Template Selection
192 cleaning templates

= ~19 templates to 2nd order8 systematics

EN and DES-Y1 
methods robust 
to overfitting

20



Further development

● Mask optimization with template 
map-statistics

● Scale-optimized cleaning
○ Harmonic prewhitening
○ Maximize S/N for cosmology

● Systematics mitigation for 
primordial non-Gaussianity (fNL)

○ Key target of LSS
○ Cleaning large scales crucial 

(e.g. Castorina et al 2019)
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Outlook

● Common framework unleashes new, powerful tools for systematics mitigation
○ Supervised learning/regression with residuals and clustering as signal of interest

● Corrections at both map and 2-pt function level

● Mask is important 
→ rapid mitigation enables iteration

● Template selection should be data-driven 
○ Self-calibrated sparsity + shrinkage priors work well!
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Thank you!

R. Hahn
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MP Assumptions on Noise
● True clustering signal = regression “noise”

Only optimal if clustering signal
1) Gaussian
2) Diagonal
3) Flat

Can estimate ⍺ in pixel space or harmonic space

Diagonalize and optimally 
weight in harmonic space

24



Impact of pixel covariance
Minor compared to methodological differences. No method particularly susceptible 

to Gaussian assumption
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