Analytic method for power spectrum covariance: speedup by four orders of magnitude

(Jay) Digvijay Wadekar New York University

DW, R. Scoccimarro, 2019 DW, M. Ivanov, R. Scoccimarro, 2020

Part I

Research overview

• Gas-rich dwarf galaxies:

- A new probe of alternatives to cold dark matter (CDM)

> Ultra-light dark photon coupling

DW & G. Farrar 19 Farrar, .., DW et al. 19

Galaxy power spectrum covariance

$$p(P_d|\theta) = \frac{1}{(2\pi)^{n/2}\sqrt{\det C(\theta)}} \exp\left[-\frac{1}{2}(P_d - P(\theta))^T C(\theta)^{-1}(P_d - P(\theta))\right]$$

Galaxy power spectrum covariance

Covariance from mock catalogs

Need to simulate mock surveys (~ thousands)

*~*𝒪 (Gpc)³

Covariance from mock catalogs

- As survey volume increases, mock catalogs become tougher to simulate (DESI, Rubin observatory)
- Dependence of covariance on cosmology and bias parameters is computationally prohibitive

$$p(P_d|\theta) = \frac{1}{(2\pi)^{n/2}\sqrt{\det C(\theta)}} \exp \left(\frac{1}{(2\pi)^{n/2}}\right)$$

 Mocks suffer from sampling noise - Need to artificially inflate constraints

$$\left[-\frac{1}{2}(P_d - P(\theta))^T C(\theta)^{-1}(P_d - P(\theta))\right]$$

Our analytic method

Patchy Mocks
 (state-of-the-art mocks used for
 SDSS BOSS parameter estimation)

DW & Scoccimarro 19

Our analytic method (MINUTES)

 Patchy Mocks (MONTHS) (state-of-the-art mocks used for SDSS BOSS parameter estimation)

DW & Scoccimarro 19

Cross-covariance

Row of matrix

Results: BOSS DRI2 full-shape analysis

Based on BOSS analysis pipeline of Ivanov, Simonovic, Zaldarriaga, JCAP 20 Philcox et al. 2020 Ivanov et al 2020 (CLASS-PT)

DW, Ivanov & Scoccimarro, 2020a

What are the challenges to analytically calculate the covariance?

Challenge I: Highly non-trivial survey window

$\delta_W(\mathbf{x}) \equiv W(\mathbf{x})\delta(\mathbf{x})$

Survey window enters covariance

 $C(k_1, k_2) = \langle \hat{P}(k_1) \hat{P}(k_2) \rangle - \langle \hat{P}(k_1) \rangle \langle \hat{P}(k_2) \rangle$

$$\langle \hat{P}(k_1)\hat{P}(k_2)\rangle = \frac{1}{V_2^2} \int_{\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2} \langle \boldsymbol{\delta}_{\boldsymbol{W}}(\mathbf{k}_1)\boldsymbol{\delta}_{\boldsymbol{W}}(-\mathbf{k}_1)\boldsymbol{\delta}_{\boldsymbol{W}}(\mathbf{k}_2)\boldsymbol{\delta}_{\boldsymbol{W}} \\ = \frac{1}{V^2} \int_{\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2, \mathbf{p}_1, \mathbf{p}_1', \mathbf{p}_2, \mathbf{p}_2'} \frac{W(\mathbf{k}_1 - \mathbf{p}_1)W}{\langle \boldsymbol{\delta}(\mathbf{p}_1)\boldsymbol{\delta}(\mathbf{p}_1')\boldsymbol{\delta}(\mathbf{p}_1')\rangle} \\ \times \langle \boldsymbol{\delta}(\mathbf{p}_1)\boldsymbol{\delta}(\mathbf{p}_1')\boldsymbol{\delta}(\mathbf{p}_1$$

 $egin{aligned} & V(-\mathbf{k}_1-\mathbf{p}_1')W(\mathbf{k}_2-\mathbf{p}_2)W(-\mathbf{k}_2-\mathbf{p}_2') \ & (\mathbf{p}_2)\delta(\mathbf{p}_2')
angle \end{aligned}$

Solution: separate clustering and window terms

$$\frac{2\ell_{2}+1)}{\int_{\hat{\mathbf{k}}_{1},\hat{\mathbf{k}}_{2},\mathbf{x}_{1},\mathbf{x}_{2}}} \int_{\hat{\mathbf{k}}_{1},\hat{\mathbf{k}}_{2},\mathbf{x}_{1},\mathbf{x}_{2}} W_{22}(\mathbf{x}_{1})W_{22}(\mathbf{x}_{2}) e^{-i(\mathbf{x}_{1}-\mathbf{x}_{2})\cdot(\mathbf{k}_{1}-\mathbf{k}_{2})} \\ \mathcal{L}_{\ell_{2}}(\hat{\mathbf{x}}_{2}\cdot\hat{\mathbf{k}}_{2}) \left[\mathcal{L}_{\ell_{2}}(\hat{\mathbf{x}}_{2}\cdot\hat{\mathbf{k}}_{2}) + \mathcal{L}_{\ell_{2}}(\hat{\mathbf{x}}_{1}\cdot\hat{\mathbf{k}}_{1}) \right] \right\}$$

See also: Li et al. 19

Why does analytic work in the non-linear regime?

 Poisson fluctuations dominate the error bars at small scales:

 \sqrt{Can} be well modeled analytically

Why does analytic work in the non-linear regime?

Shot noise (dashed) dominates at high-k

$$\mathbf{C}(k_1, k_2) = \langle \delta(k_1)\delta(-k_1)\delta(k_2)\delta(-k_2) \rangle$$
$$- \langle \delta(k_1)\delta(-k_1)\rangle \langle \delta(k_2)\delta(-k_2) \rangle$$
$$\mathbf{C}^{\mathbf{G}}(k_1, k_2) \simeq 2 \langle \delta(k_1)\delta(-k_2)\rangle \langle \delta(k_2)\delta(-k_1)\rangle$$

 $\mathbf{C}^{\mathrm{NG}}(k_1, k_2) = \langle \delta(k_1) \delta(-k_2) \delta(k_2) \delta(-k_1) \rangle_c$

Will analytic cov. work at non-linear scales for upcoming surveys?

DESI

Euclid

Yes, should work at non-linear scales for upcoming surveys

 10^{1}

Shot noise level of upcoming surveys is comparable to BOSS

 $P(k_{\rm BAO})/(1/\bar{n})$

10⁻¹ C

Yes, should work at non-linear scales for upcoming surveys

Shot noise level of upcoming surveys is comparable to BOSS

Shot noise will
 dominate covariance
 for upcoming surveys

Font-Ribera et al. 2014

Analytic covariance is crucial for going beyond a 2-point analysis

- \checkmark Number of k-bins in power spectrum ~100
- Number of triangles in bispectrum (3-pt) ~6000
 - Bottleneck for BOSS (Gil-Marin et al 17 could only use ~800 triangles)

- Number of mock simulations: O(1000)
- For low sampling noise:

size of data 🦟 no. of mocks vector

Analytic covariance is crucial for going

Analytic covariance is crucial for going beyond a 2-point analysis

$\sqrt{\text{Number of k-bins in power spectrum } \sim 100}$

- Number of triangles in bispectrum (3-pt) ~6000 - Bottleneck for BOSS
 - (Gil-Marin et al 17 could only use ~800 triangles)
- Also important for other areas with high-dimensionality of the covariance matrix: for e.g., 3x2pt analysis in photometric surveys or combining cluster counts with correlation fns

- Number of mock simulations: O(1000)
- For low sampling noise: size of data 🦟 no. of
 - mocks vector

Part II Machine learning for emulating hydrodynamic simulations

DW, Paco Villaescusa-Navarro, Shirley Ho & Laurence Perrault-Levasseur (aXiv:2007.10340 & aXiv:2012.00111)

Emulation of hydro sims for future surveys

- Volume of upcoming surveys like DESI: ~O (10-100 Gpc³)
- Hydro sims are expensive: ~10 million CPU hours for (0.001 Gpc³)

Emulation of hydro sims for future surveys

DM (dark matter) HI (neutral hydrogen)

- Volume of upcoming surveys like DESI: ~O (10-100 Gpc³)
- Hydro sims are expensive: ~10 million CPU hours for (0.001 Gpc³)

HOD: (Halo Occupation Distribution)

Quickly

- Fill HI using: $M_{HI} = f(M_{halo})$
- assembly history, environmental info. neglected

Neural networks: universal approximators

 z_1

 z_2

(faceapp)

Can we interpret what the network has learnt?

Network has learnt to include env. info

 Network lowers M_{HI} in a cluster-like environment (ram pressure stripping)

Alternate . Modeling the halo HI mass approach ' with symbolic regression

HI mass of halo = f (halo mass, ?)

- Halo env. overdensity (R)
- Env. anisotropy (R)
- Halo concentration
- Halo spin
- Halo assembly history
- Halo shape

••••

- Velocity dispersion anisotropy

Results:

Modeling the halo HI mass with symbolic regression

Understanding the effect of halo environment on HI: Why don't baryons just follow dark matter?

HOD

 $M_h \in [10^{9.5} - 10^{10.5}] M_{\odot}/h$ $M_h \in [10^{10.5} - 10^{11.5}]$ $M_h \in [10^{11.5} - 10^{12.5}]$ $M_h \in [10^{12.5} - 10^{13.5}]$

5

Understanding the effect of halo environment on HI: Don't baryons just follow dark matter?

(ram pressure stripping)

Understanding the effect of halo environment on HI: Don't baryons just follow dark matter?

Denser env.

→ more mergers

Sparser env.

Baryonic content = f (halo mass, ?) of a halo

- No. of galaxies (ELGs for DESI)
- Electron pressure (SO, CMB-S4)

Future work

- Halo env. overdensity (R)
- Env. anisotropy (R)
- Halo concentration
- Halo spin
- Halo assembly history
- Halo shape

.

- Velocity dispersion anisotropy

Future work: checking robustness of our results to baryonic feedback

Baryonic feedback parameters

Summary

- ★ Analytic covariance is an excellent complement to mock simulations for DESI and Euclid
- Very good agreement with the state-of-the-art mocks up to non-linear scales
- 2. Immense computational speedup (~ 10⁴)
- 3. Reduces systematic error budget of constraints
- ★ Machine learning can be used to emulate hydro sims and make accurate synthetic maps needed for upcoming LSS surveys

Modeling the environment effect : symbolic regression

Linear trend

$$_{5}m_{10} - 0.6\left(\alpha_{0.5}^{\prime 2}m_{10}^2 + \alpha_{0.5}^{\prime}\delta_5^{\prime}\right)$$

Quadratic cutoff (due to ionizing feedback)

• Inspired by D³N (He et al 2019)

Effect of environment is stronger for low-mass halos $M_h \in [10^{9.5} - 10^{10.5}] M_{\odot}/h$ HOD $M_h \in [10^{10.5} - 10^{11.5}]$ $M_h \in [10^{11.5} - 10^{12.5}]$ $M_h \in [10^{12.5} - 10^{13.5}]$ $\Omega_{\rm HI,bin}/\Omega_{\rm HI}$ 000 5 4 0.00 10^{9} 10^{10} 10^{11} 10^{12} 10^{13} 10^{14} $M_h (h^{-1} M_{\odot})$ Low mass halos are imp

for HI surveys

Tidal anisotropy parameter (Paranjape et al 2018)

$$q_R^2 \equiv \frac{1}{2} \left[(\lambda_2 - \lambda_1)^2 + (\lambda_3 - \lambda_1)^2 + (\lambda_3 - \lambda_1)^2 \right]$$
$$\alpha_R \equiv \sqrt{q_R^2} / (1 + \delta_R)$$

In plots: $\alpha'_R \equiv \log(1 + \alpha_R)$ $\delta_R' \equiv \log(2 + \delta_R)$

$(-\lambda_2)^2$

Non local bias

$$s_{ij}^2 = 2q^2/3$$