Revealing the First Billion Years of the Universe

Eli Visbal

University of Toledo, Department of Physics and Astronomy & Ritter Astrophysical Research Center

Group Members

UToledo PhD Students/postdoc/undergrads:

Mihir Kulkarni

Abigail Ambrose

Additional key collaborators: Matthew McQuinn (U of Washington), Greg Bryan (Columbia), and Zoltan Haiman (Columbia)

Colton Feathers

Ryan Hazlett

Trevor Blodgett

Thomas Behling

First Billion Years

Cosmic Microwave Background from Planck

- "Baby picture" of Universe (~380,000 years old)
- Very small temperature fluctuations (1 part in 100,000)
- <u>Simple initial conditions!</u>
 - Dark matter
 - <u>Gas</u>
 - <u>Radiation</u>

Hubble Ultra-Deep Field

- Tiny patch of sky
- ~10,000 galaxies
- View of the past (≳billion years after Big Bang)
- <u>Emergence of complexity!</u>

First Billion Years

- Big Questions
 - What were the properties of the first stars?
 - How did the first supermassive black holes form?
 - How/when did reionization occur?

- Why is this interesting?
 - Gap in cosmic timeline
 - First stages of galaxy evolution
 - Possible new dark matter physics

New Windows into the Early Universe

James Webb Space Telescope

- New instruments now and in coming decade
- Deep observations \rightarrow earlier times
- Improved theoretical predictions required to maximize scientific return on investment

Giant Magellan Telescope, Thirty Meter Telescope

Large Radio Telescopes -- 21cm cosmology

Outline

- First stars (Population III)
 - Hydrodynamical cosmological simulations
 - Semi-analytic models
- Probing Cosmic Reionization with Line-Intensity Mapping
 - Lyman- α intensity mapping observations
 - Cross correlating JWST galaxies and line-intensity maps

First Stars (Population III)

Haiman et al. (1996), Tegmark et al. (1997), Abel et al. (2002), **Visbal** et al. (2012), **Visbal** et al. (2015), Hirano et al. (2014/2015)

- Metal-free (Pop III), i.e. formed from H and He
- Theoretical Predictions
 - H₂ cooling
 - Form in $\sim 10^{5-6} M_{\odot}$ "minihalos"
 - Massive stars
- Open Questions
 - Initial mass function (IMF)
 - Abundance/evolution
 - Impact on IGM
- Importance
 - First stages of galaxy evolution
 - Dark matter physics

Pop III Star Formation in Cosmological Simulations, Hirano et al. (2014)

Mass Distribution of Dark Matter Halos

Observational Probes

• Supernovae (JWST/WFIRST)

[e.g., Whalen et al. (2013), Magg et al. (2016)]

 Gravitational waves from BH remnants (Advanced LIGO)

[e.g., Inayoshi et al. (2015)]

- Low-Mass High-Redshift Galaxies (JWST)
 [e.g., Visbal et al. (2017); Kulkarni, Visbal & Bryan (2019)]
- Stellar archaeology (GMT/TMT) [see Frebel & Norris (2015)]
- 21cm observations (HERA) [e.g., Visbal et al. (2012); Fialkov et al. (2014)]

James Webb Space Telescope

Giant Magellan Telescope

Key Question: Critical Halo Mass For Pop III Star Formation

H₂ Cooling via Star Formation emission of radiation

- Gas cools \rightarrow collapses to high density \rightarrow star formation
- Cooling via H₂ rotational/vibrational transitions
- $\sim 10^6$ solar mass dark matter halos (e.g., Machacek et al. 2001)
 - Sufficient density for significant H₂ formation
 - Virial temperatures of hundreds of Kelvin \rightarrow excite H₂ transitions
- Precise mass crucial, but not previously predicted with all relevant physics included
- <u>Strongly impacts the abundance of Pop III stars</u>

Effect I: Lyman-Werner Feedback

Haiman et al. (1997); Machacek et al. (2001); O'Shea & Norman (2008); EV et al. (2014)

- LW photons: 11.2 13.6 eV
- LW photons dissociate H₂
- LW background produced by stars suppresses star formation in small minihalos
- Higher LW flux → higher minimum mass for star formation
- Self-regulation of first stars

Effect II: Streaming Velocity

Tseliakhovich & Hirata (2010)

Gravitational potential well

- Before ~380,000 years ionized gas coupled to radiation
- Dark matter falls into gravitational potential wells
- Gas supported by radiation pressure
- Results in relative velocity between dark matter and gas

Effect II: Streaming Velocity

Tseliakhovich & Hirata (2010), Fialkov et al. (2012), Visbal et al. (2012)

- Velocity varies spatially
- High velocity regions star formation suppressed in low mass dark matter halos

Simulations of Critical Halo Mass Kulkarni, EV, Bryan (2021), see also Schauer et al. (2021)

Cold/dense region leading to Pop III Star formation

No Cold/dense region leading to Pop III Star formation

- Adaptive mesh refinement code ENZO (Bryan et al. 2014)
 - 0.5 Mpc/h box, 22 pc maximum spatial resolution
 - \sim ~900 halos above $\sim 10^5 M_{\odot}$ at z=15
- Initial conditions with streaming velocity (McQuinn & O'Leary 2012), include primordial chemistry and cooling, LW radiation + H₂ self shielding
- Grid of different Lyman-Werner intensities and streaming velocities (9 combinations)

Pop III Critical Halo Mass Results

- Lower critical halo mass than previous results (e.g., Machacek et al. 2001) due to H₂ self-shielding (Wolcott Green & Haiman, 2019)
- LW + v_{bc} combine for stronger effect, but not in simple multiplicative manner as previously assumed
- Analytic fitting function for $M_{crit}(v_{bc}, J_{LW}, z)$ available

Implications of New M_{crit}

- Monte Carlo Merger Tree Based Semi-analytic Model
- Self-shielding of H₂ → lower critical halo mass needed for Pop III star formation
- Orders of magnitude more Pop III stars in early universe

Colton Feathers

Key Challenge: Computational Cost

- Need to model abundance vs time including feedback (e.g., ionization and metal enrichment) for observational predictions
- Hydrodynamical cosmological simulations
 - Detailed treatment of physical processes
 - Computationally expensive (millions of CPU-hours)
 - Restricted in volume
 - Free parameters
 - Pop III/Pop II IMF
 - Critical metallicity for Pop III
- Alternative, faster approach is complementary

Renaissance Simulations; O'Shea et al (2015)

Faster Approach: Semi-analytic Model of First Stars/Galaxies

Visbal et al. (2018, 2020). See also: Trenti et al. (2009), Agarwal et al. (2012), Crosby et al. (2013), Griffen (2016), Magg et al. (2018)

- Based on cosmological N-body simulations (Springel et al. 2001, Behroozi et al. 2013)
- Analytic prescriptions for Pop III and metal enriched star formation (calibrated with hydro sims)
- New model with main 3D feedback processes
 - Hydrogen ionization
 - Intergalactic medium metal enrichment
 - LW feedback/streaming velocity
- Computationally efficient to compute cosmic abundance of first stars → can scan parameter space for observational prescriptions

First Stars and Galaxies in 3 Mpc box at z=8.6 (Visbal et al. 2020)

Metal-enriched intergalactic medium

Calibration of Semianalytic Model to Renaissance Simulations

Ryan Hazlett

Calibration of Semianalytic Model

- Fast models (~10 CPUhours vs 10 million CPUhours), consistent with the simulations
- Will soon apply to observational predictions
 - Low-mass galaxies from JWST
 - Supermassive black hole seeding
 - 21cm observations

Global Star formation history in simulations vs semi-

Hazlett, EV+,. in prep.

Calibration of Early Reionization in Semi-analytic Model

Thomas Behling

First Stars – Summary/Conclusions

- Determined minimum mass of halos to form Pop III stars with Lyman-Werner + streaming velocity
 - Fitting forms available for observational predictions
 - Lower mass found due to H2 self shielding
 - Order of magnitude increase in abundance of first stars/galaxies compared to previous calculations, implications for 21cm observations, first galaxies
- New semi-analytic model of the first stars/galaxies
 - Efficient method to compute Pop III and high-z galaxy abundance including
 - Performed detailed calibration with hydro sims
 - Can be utilized for variety of observational predictions

Outline

- First stars (Population III)
 - Hydrodynamical cosmological simulations
 - Semi-analytic models
- Probing Cosmic Reionization with Line-Intensity Mapping
 - Lyman- α intensity mapping observations
 - Cross correlating JWST galaxies and line-intensity maps

Cosmic Reionization

Universe neutral at t=380,000 years → Intergalactic gas ionized by t~10⁹ years (z=6)

• How did reionization occur?

- Radiation from early galaxies \rightarrow ionized bubbles
- Bubbles grow and eventually overlap
- Detailed reionization history/geometry → lead to better understanding of high-redshift galaxies and characterize cosmic milestone

Measuring Large Scale Structure: Galaxy Line Intensity Mapping

EV & Loeb (2010); Chang et al. (2010); EV, Trac, & Loeb (2012); Gong+(2011/2012); Lidz+(2011); Silva+(2013); Croft et al. (2015); Kovetz et al. (2017)

- Large-scale 3D maps of galaxy line emission
- Measures cumulative emission from ALL sources
- Proposed lines include 21cm (HERA), CO (COMAP), CII (TIME), Lyman-α (SPHEREx)
- Probe of cosmology & galaxy evolution

Lyman- α Intensity Mapping

Silva et al. (2012), Pullen et al. (2014), Visbal & McQuinn (2018)

SPHEREx, NASA

Lyman- α Intensity Map

Visbal & McQuinn 2018

- Large-scale Lyman- α maps can probe reionization (**Visbal** & McQuinn 2018, Abrose, EV+ in prep)
- SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer)
 - Scheduled for 2025 launch!

Lyman- α Radiative Transfer

- Scattering in intergalactic gas previously ignored, but important!
- Developed Monte Carlo RT code (Visbal & McQuinn 2018)

SPHEREx, NASA

Lyman- α Radiative Transfer During Reionization

- Interaction cross section very high near line center (1216 Å)
- Expansion of the Universe \rightarrow Doppler shift
- Large bubbles \rightarrow high velocity at bubble edge \rightarrow Lyman- α photons escape

Simulated Lyman-lpha Intensity Maps

- Simulated reionization with 21cmFAST (Mesinger et al. 2011)
- Utilize Monte Carlo Lyman- α RT code
- Maps smoothed by photon scattering

New Probe of Reionization visbal & McQuinn 2018

• Higher neutral fraction \rightarrow additional smoothing

300 million light years

Powerful probe of reionization, detectable with SPHEREX

High Neutral Fraction → Suppresses Power on Small Scales

Can be used to constrain ionization history!

Additional Lya Sources

Abigail Ambrose

- EV & McQuinn (2018) only included Lyman-alpha from galaxies
- Completing sims with all sources (Ambrose, EV+ in prep)
 - Collisional cooling at bubble edges
 - Recombinations
 - Galaxy continuum photons absorbed in Lyman series lines and reprocessed into Lya

Additional Lya Sources

- Still find strong power dependance on neutral fraction (sensitive to reionization history)
- Continuum reprocessing provide strongest contribution (in addition to galaxies) for most realistic reionization models

Abigail Ambrose

Role of James Webb Space Telescope (EV and McQuinn, 2023)

- Cross-correlating galaxies with intensity maps \rightarrow promising way to remove contaminants in maps
- Our question: how well will JWST work for this?
- Small JWST field of view: 3' versus degrees across for intensity mapping
- Will it be possible to measure the cross power with sparse JWST pointings?

Cross Correlation of JWST Galaxies and Lya IM with SPHEREx

Intensity Mapping Summary

- Lyman- α intensity mapping can potentially constrain the timing of reionization
 - Small bubbles → more scattering → reduced fluctuations on small scales
 - Detectable with SPHEREx
- JWST Intensity Mapping Cross Correlation
 - Residual astrophysical foregrounds in IMs could be problematic
 - 3'x3' JWST FOV poorly matched to degree-scale IMs
 - Good signal-to-noise still achievable with pencil beams in reasonable JWST time