Growth of structure with X-ray clusters

A. Vikhlinin, A. Kravtsov, R. Burenin, H. Ebeling, W. Forman, A. Hornstrup C. Jones, S. S. Murray, D. Nagai, H. Quintana, A. Voevodkin

Why X-rays?

Easy to find ...

- Observe dominant baryonic component
- Detectable with very few photons $(N_{phot} < N_{gal})$
- Detectable to high z

Easy to measure.

M ∝ Y_X^{3/5} E(z)^{-2/5} — follows from self-similarity + virial theorem + "fair sample"
need 1500 photons to measure Y_X papers by Nagai, Kravtsov, & AV

With good data, everything fits together

• — Chandra, hydrostatic; • — weak lensing, Hoekstra '07; • — groups, Sun etal '09

• Systematic errors: $\Delta M/M < 9\%$ at z = 0

$$\Delta \frac{M(z=0.5)}{M(z=0)} < 5\%$$

• 36 clusters at *z* > 0.35 from 400d

http://hea-www.harvard.edu/400d

- 48 at $z \sim 0.05 0.15$ from ROSAT All-Sky Survey
- Measure Y_X , M_{gas} , T_X in all with *Chandra*

Mass functions, detection of Λ

• $\Lambda > 0$ at ~ 5 σ required by mass functions

Growth history

d(z) fixed at concordance cosmology;

D(z)/(1+z) = 1 for $\Omega_M = 1$

Growth history

d(z) fixed at concordance cosmology;

D(z)/(1+z) = 1 for $\Omega_M = 1$

Equation of state constraints

 $w_0 = -1.14 \pm 0.21 \text{ (stat)} \pm 0.13 \text{ (sys)}$

w₀ constraints

• $w_0 = -0.99 \pm 0.045$ (stat) compare with ± 0.067 without clusters

• More stable to systematics: $\Delta w = 0.076 \text{ (SN)} \longrightarrow \Delta w = 0.039$

(0.022 from SN and 0.033 from clusters)

Future projects: SPT (SZ)

- On-going, first detections published
- 1,000 deg² survey

Staniszewski et al. 2008

• 100–1,000 clusters

•
$$z_{\max} \approx 1 - 2$$
?

Future projects: SRG/eRosita (X-ray)

- Funded, launch in 2012+
- Effective area ~ *XMM*
- Angular resolution ~ *ROSAT*
- 0.5 deg² FOV
- all-sky survey,

 $f_{\rm min} = (2-4) \times 10^{-14} \,{\rm erg}\,{\rm s}^{-1}\,{\rm cm}^{-2}$

- 100,000-200,000 clusters
- $z_{\rm max} \approx 1.5$

Future projects: WFXT (X-ray)

- Proposed
- Effective area ~ *Con-X*
- Angular resolution ~ *XMM*
- 1 deg² FOV
- a few $\times 10^3$ deg² survey, $f_{\rm min} = 10^{-15}$ erg s⁻¹ cm⁻²

- $N \gg 10^5$ clusters
- $z_{\text{max}} > 2$

Future progress: more weak lensing masses

• — Chandra, hydrostatic; • — weak lensing, Hoekstra '07;

Small effects in *M*-proxy relations

• ~ 15% offset between relaxed and non-relaxed clusters

Baryon fraction within clusters and groups

• Problem: f_g trend, $f_g + f_* < \Omega_b / \Omega_M$

Gonzalez etal.

Ultimate mass calibration

- WL low bias, large scatter; X-rays low scatter, potential bias
- 100 clusters with Y_X (IXO) and M_{WL}

 \implies 3% in $M - Y_X \implies$ 1% in growth factor per bin

Flavor of results

- Measure growth(z) to z = 2
- ~ 2.5-fold improvement for Δw in combination with distance(z)
- Test of non-GR theories

For $\Omega_M = 0.25$: $\sigma_8 = 0.813 \pm 0.013$ (stat) ± 0.024 (sys)

Bias and Scatter in M

- $\alpha = 2 6$
- $\gamma = (3-5) \times \alpha$
- Rule of thumb: 5% error in $M \implies 2\%$ error in growth

Bias and Scatter in M

- $M^{-\alpha} \otimes \text{log-normal } \delta_{\ln M} \implies M^{-\alpha} \times \exp\left(\alpha^2 \delta_{\ln M}^2/2\right)$
- Rule of thumb: need to know $\delta_{\ln M}^2$ to 0.01 \implies 10% mass proxies are OK, 30% are not.

Physics of f_g trend

- In the Kravtsov et al. simulations, $f_g + f_{\text{stars}} \approx \Omega_b / \Omega_M$
- Some observational support Gonzalez et al:

Scaling of $f_g(M, z)$

• $f_g(M,z) = f_g(M/M_*)$

- Overall correction \implies 11% in M at z = 0.5
- Estimated systematic errors 5% in M at z = 0.5