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V. Springel et al. (2006)

• Large-Scale Structure (LSS) of the universe a powerful probe of fundamental 
physics
• Dark energy
• Dark matter
• Massive neutrinos
• Gravity

• Will soon be mapped precisely by:
• Dark Energy Scientific Instrument (DESI)
• V. Rubin Observatory LSST
• Euclid
• Nancy Grace Roman Space Telescope
• SPHEREx
• + Synergies with CMB

• How do we optimally extract information from the LSS??

Challenges in the era of precision cosmology



• Attempts to describe the information encoded in the 3D cosmic density field

The quest for an ideal estimator

F. Villaescusa-
Navaro et al. (2019)
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Physical Information

O. Philcox et al. (2021)

2-point correlation function/Power Spectrum
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• Attempts to describe the information encoded in the 3D cosmic density field

The quest for an ideal estimator

2-point correlation function/Power Spectrum  (Incomplete)

Power Spectrum information
saturates in nonlinear regime.

Inadequate!
(Carron 2011,2012)

M. Neyrinck et al. (2009)

F. Villaescusa-
Navaro et al. (2019)
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• Attempts to describe the information encoded in the 3D cosmic density field

The quest for an ideal estimator

F. Villaescusa-
Navaro et al. (2019)

Power spectrum + Higher order statistics (expensive)  

3-point function 4-point function
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O. Philcox et al. (2021)



• Attempts to describe the information encoded in the 3D cosmic density field

The quest for an ideal estimator

F. Villaescusa-
Navaro et al. (2019)

Marked power spectrum, log. transform, skew spectrum 
Nearest neighbor distributions, density split, etc

Power spectrum + Higher order statistics 

Physical Information

AI in Science
A program of SCHMIDT FUTURES

𝛿(𝑥)

m(𝑥)

Massara et al 2020



• Attempts to describe the information encoded in the 3D cosmic density field

The quest for an ideal estimator

F. Villaescusa-
Navaro et al. (2019)

Power spectrum + Higher order statistics 

Artificial Intelligence (e.g. CNNs)
(Training, interpretability)

Physical Information

Marked power spectrum, log. transform, skew spectrum 
Nearest neighbor distributions, density split, etc
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• Attempts to describe the information encoded in the 3D cosmic density field

The quest for an ideal estimator

F. Villaescusa-
Navaro et al. (2019)

Power spectrum + Higher order statistics 

Physical InformationWavelet Scattering Transform (WST)  
S. Mallat (2012)

Marked power spectrum, log. transform, skew spectrum 
Nearest neighbor distributions, density split, etc

Artificial Intelligence (e.g. CNNs)
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The Wavelet Scattering Transform (WST)

Input field Family of Wavelets
• Dilated by 2!! - J scales
• Rotated by 𝑙" - L orientations

Convolution Modulus

Averaging

“Scattering Network” image by G. Exarchakis (2018) 

WST:
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Physical interpretation of WST coefficients
•                                                       :   Mean field

•                                                       :   ~  P(k).  In fact, P(k) 

•                                                       : Non-Gaussian information (up to 2! = 4pcf , for n=2)
• Basis 𝑆# + 𝑆" + 𝑆$	 reflects clustering properties of target field 𝐼#(𝑥)
• Retaining all desirable properties of regular P(k) ✅  Mallat (2012)

         +
• Compactness ✅ (Anden & Mallat, 2011,2014, Bruna & Mallat, 2013 ) & Robustness/Stability ✅ (Carron 

2011,2012, Cheng & Menard 2021b)

• A CNN with fixed weights, but interpretable! (Bruna & Mallat 2013)
• Performance on par with a CNN in WL applications! (Cheng et al. 2020b, Cheng & Menard 2021a)

• WST exceeds performance of traditional P(k) in 3D LSS studies (Valogiannis & Dvorkin 2022a)
• Also overperforms marked P(k) (Massara et al., PRL 126, 011301 (2021))

The Wavelet Scattering Transform (WST)AI in Science
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• Fisher information obtained from 2D simulated WL shear maps
• Performance on par with a state-of-the-art CNN!

WST application on weak lensing

Cheng et al. (2020)
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• WST coefficients efficiently identify
non-Gaussianity in WL shear maps

WST application on weak lensing

Cheng et al. (2020)

AI in Science
A program of SCHMIDT FUTURES



• 3-dimensional WST implementation with ‘solid harmonic’ wavelets (Eickenberg et al. (2018))

• Implemented in KYMATIO package (Andreux et al. 2019)

The Wavelet Scattering Transform (WST)

Gaussian 
envelope

Solid Harmonics

• Dilated by dyadic scales 2!!

• Wavelets in the literature
• Bump steerable wavelets (Eickenberg et al, 2022, 

Allys et al, 2020)
• Morlet wavelets (Cheng et al. 2020b, Cheng & 

Menard 2021a)
• Equivariant wavelets (Saydjari & Finkbeiner, 2021)
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The Wavelet Scattering Transform (WST)

Gaussian 
envelope

Solid Harmonics

• Dilated by dyadic scales 2!!
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• First WST application on 3D matter density field! 

• Evaluated from the Quijote simulations (F. Villaescusa-Navaro et al., 
2019)

• Fiducial cosmology

  Box L=1.0 Gpc/h
• In presence of massive neutrinos, trace both:
•                                        Total ‘m’ field
•                                        ‘cb’ field

First WST application on 3D LSS

,  resolution 𝑁%&'( = 256)

(Valogiannis & Dvorkin, 2022a)
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Fisher forecasting 
• 15,000 realizations for fiducial cosmology
• 7,000 for linear derivatives in parameters

• Marginalized 
for                                                               , z=0

Comparing 3 observables 𝑂":
• Power spectrum P(k) 
• Marked power spectrum M(k) 
• 𝑆# + 𝑆$ + 𝑆! = 76 WST coefficients
   Using J=5 scales and L=5 orientations

Fisher forecast

WST coefficients - correlation matrix
Valogiannis & Dvorkin 2022a
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• Marked correlation function generalizes 2-point function

• Each galaxy weighted by mark ‘m’
• Inverse density weighted mark (highlights voids)

• Can constrain modified gravity (M. White 2016, Valogiannis 
& Bean 2018, Alam et al., 2021)

• Can constrain neutrino mass (Massara et al, PRL 2020)

• Contains info beyond 2-point function (Philxcox et al., 2020)

Marked Power Spectrum

Massara et al 2020

𝛿(𝑥)

m(𝑥)
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• Raising modulus to powers q<1 emphasizes on 
cosmic voids (lower overdensity regions)

• Very sensitive to neutrino mass!

• q=0.8 found to be optimal

WST sensitivity to neutrino mass

Valogiannis & Dvorkin 2022a
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• WST delivers significant improvement in 
the 1-σ errors for all parameters!

• ~1.2-4x tighter errors than from ‘cb’ P(k)! 
• Constrains on neutrino mass:

• ~4x tighter than ‘cb’ P(k)!
• ~1.6x tighter than ‘cb’ M(k)!

• ~3x100x tighter errors than from ‘m’ P(k) 

Great improvement over matter P(k)!

Valogiannis & Dvorkin 2022a

‘cb’, z=0 
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• New WST application on MG in the works, Quijote-
MG 

• f(R) Hu-Sawicki model application + 6 ΛCDM

• Constrains on MG parameter Y=𝑓%!
&'(" $# :

• ~5x tighter than ‘cb’ P(k)!

• Follows and exceeds neutrino mass trend
• Parallels between scale-dependent growth in both 

scenarios

• In collaboration with Francisco Villaescusa-
Navarro & Marco Baldi

Upcoming MG application

Valogiannis et al., in prep.

AI in Science
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‘cb’, z=0 

New column showing contraints on deviations from 
GR (Y->0) 



V. Springel et al. (2006)

However
• LSS surveys observe galaxies:

• Biased tracers of dark matter field
• Redshift-Space Distortions (RSD)
• Systematics (Geometry, fiber collisions, etc..)
• Lightcone
• etc

Realistic galaxy survey data

C. Hernández-Aguayo et al., 2018
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• We perform likelihood analysis, sampling from Gaussian likelihood 

Likelihood analysis
AI in Science
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• First WST application on 3D redshift-space galaxy density field! (Valogiannis & Dvorkin 2022b)
• Working with BOSS CMASS DR12 sample at 0.46<z<0.57
• Northern + Southern Galactic Cap

• For survey data, fundamental quantity of interest is
the FKP field (Feldman, Kaiser, Peacock et al., 1994) :

• Systematic + FKP weights 

• Serves as input into WST network
• With 𝑁%&'( = 270)	and	𝐿*+, = 2700	𝑀𝑝𝑐/ℎ

First WST application on BOSS

SDSS https://blog.sdss.org/ 

Galaxies Randoms

AI in Science
A program of SCHMIDT FUTURES
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• Data

• Use vector of WST coefficients as observable
• Extracted from BOSS CMASS FKP field, using
J=5 scales and L=5 orientations
• 𝑺𝟎 + 𝑺𝟏 + 𝑺𝟐 = 𝟕𝟔	WST coefficients

• Also, use galaxy 2-point correlation function multipoles
 𝝃𝒍.𝟎,𝟐(𝒓) (𝒓𝒎𝒊𝒏 = 𝟖 Mpc/h) 

as benchmark

Likelihood analysis

SDSS https://blog.sdss.org/ 

AI in Science
A program of SCHMIDT FUTURES

https://blog.sdss.org/


• Theory model

• Capture cosmological dependence using 
Abacus Summit simulations (Maksimova et al. 2021, Garrison et al. 2019&2021)
HOD tuned to BOSS CMASS at 0.46<z<0.60 with AbacusHOD (Yuan et al. 2021)
Box L=2000 Mpc/h, 𝑁%&'( = 200)

• Fiducial cosmology from Planck 2018 
• + Fixed angular size of sound horizon at last scattering.                                  
• + 7 HOD model paramerers (vanilla HOD + velocity bias)

• We cut Abacus cubic boxes into actual CMASS geometry
• Using ‘make survey’ (White et al., 2013)

 

Likelihood analysis
AI in Science
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WST emulator

Yuan et al., 2022b

• Construct full emulator of WST’s cosmological dependence
• Data vector of 76 coefficients up to 2nd order, for J=L=5
• Trained from 151,474 Abacus Summit galaxy mocks!
• 8 cosmo + 7 HOD = 15d space, neural net-based

Valogiannis et al., 2023

ΛCDM

HOD

Extended
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WST emulator

Yuan et al., 2022b

• Construct full emulator of WST’s cosmological dependence
• Data vector of 76 coefficients up to 2nd order, for J=L=5
• Trained from 151,474 Abacus Summit galaxy mocks!
• 8 cosmo + 7 HOD = 15d space, neural net-based
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• Covariance matrix obtained from N=2048 PATCHY mocks (S. A. Rodriguez-Torres et al., 2016)

 

Likelihood analysis

Valogiannis et al., 2023
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• We perform likelihood analysis, sampling from Gaussian likelihood 

Likelihood analysis

WST Correlation function

Valogiannis et al., 2023
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Hold-out tests on Abacus mocks
• Tests against out-sample test set of mocks
• Successful parameter recovery in all 40 hold-out tests!!
• Confirms tight 1-σ errors using full likelihood/MCMC!
• Marginalized over 7 HOD nuisance parameters
• In agreement with conclusions of (Valogiannis & 

Dvorkin, 2022b) !

Example of successful parameter recovery from a 
test mock with low 𝜎5 

True parameter values

Valogiannis et al., 2023
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Hold-out tests on Abacus mocks

Valogiannis et al., 2023
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Correlation function emulator

Yuan et al., 2022b

• Construct equivalent emulator for multipoles of galaxy 2-
point correlation function (l=0,2)

• Adaptive spatial binning down to 𝑟6'7 = 8 Mpc/h
• Trained from 151,474 Abacus Summit galaxy mocks!
• 8 cosmo + 7 HOD = 15d space, neural net-based

AI in Science
A program of SCHMIDT FUTURES



Hold-out tests on external Uchuu mock

Valogiannis et al., 2023

Evidence of successful parameter recovery from 
Uchuu-SHAM test mock using abundance matching

True parameter values

• Successful parameter recovery in non-HOD mock!!
• Uchuu UniverseMachine mock (T. Ishiyama et al., 2021),
 2.0 89:

;
 side box with number density 𝑛% = 2.9𝑥10<= ;"

>9:"
 . 

• More realistic treatment than HOD
• Indicates robustness against different galaxy mock 

type/model, and also phase!

AI in Science
A program of SCHMIDT FUTURES

https://arxiv.org/search/astro-ph?searchtype=author&query=Ishiyama%2C+T


WST Constraints from BOSS CMASS data!

• WST 1σ errors on 𝜔:& 𝑛? 4.2x & 1.6x tighter than ξ(r)
• Joint WST+ξ(r) analysis improves 1σ errors by 2.5-6x 

compared to ξ(r)-only!
• Joint WST+ξ(r) analysis improves 1σ errors by 1.4-2.5x 

compared to WST-only
• Competitive 0.9%, 2.3% & 1% determination of 𝜔:, 𝜎5	& 𝑛?
• 0.7% determination of 𝐻#, as a derived parameter from 
fixed 𝜃∗

Valogiannis et al., 2023
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Competitive Constraints on Structure Growth!

• f𝝈𝟖(𝒛𝒆𝒇𝒇 = 𝟎. 𝟓𝟏𝟓)= 0.469 ± 0.012
• 2.5% level of determination in 

agreement with Planck 2018
• In 1σ agreement with density-split 

analysis (Paillas et al., 2023)

• 𝑺𝟖 = 0.833 ± 0.023, in almost perfect 
agreement with Planck 2018

     𝑆5 = 0.832 ± 0.013

Valogiannis et al., 2023
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WST Constraints from BOSS CMASS data!

Valogiannis et al., 2023
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Constraints on ΛCDM extensions
• Joint WST+ξ(r) analysis allows simultaneous constraints on 
4 extensions to ΛCDM
• 1σ consistency with ΛCDM limits

Valogiannis et al., 2023
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Alternative Summary Statistics in DESI

• Wavelet scattering transform 
• Void-galaxy cross-correlation function 
• DT spheres/voids 
• Void size function 
• kNN statistics 
• Lensing Cumulants 
• Minkowski functionals 
• Density-split clustering 
• Linear point distance scale 
• Void lensing
Etc

WST Constraints from DESI Y1 data!

Two-point correlation functions of DESI tracers from DESI Y1 
blinded catalogs (without reconstruction). The circle indicates the 
location of the BAO features.  (Credits to by Ashley Ross & DESI 
collaboration)

Dark Energy Spectroscopic Instrument (DESI)

AI in Science
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• Wavelet Scattering Transform: a novel statistic that efficiently extracts non-Gaussian information 
from physical fields. Ideal middle ground between CNN and traditional estimators  

• First WST application to actual spectroscopic data (Valogiannis et al., 2023, arXiv: 2310.16116 , Valogiannis 
& Dvorkin , arXiv: 2204.13717, Phys. Rev. D 105, 103534, 2022)
• Worked with BOSS CMASS galaxy sample at 0.46<z<0.57 
• Substantial improvement in the 1σ errors over traditional galaxy ξ(r) multipoles

• Ongoing & future improvements (in progress)
• Can more accurately capture lightcone evolution, fiber collision/systematic effects in galaxy mocks 

(Eg. see Yuan et al. 2022c)
• Design wavelets tailored for cosmological/RSD applications (public package under construction!)
• Blind mock challenges

• Future applications
• Application to DESI – Project #255 (& Euclid) 
• Constrain neutrino mass (Eg. as in Valogiannis & Dvorkin, arXiv: 2108.07821, Phys. Rev. D 105, 103534, 2022)
• Constrain fundamental physics (theories of gravity, primordial non-Gaussianity, parity violation)
• Weak lensing & cross-correlations (DES, future applications to Rubin LSST & Euclid, DESI-II)
• Recent applications also to Lyman-α, 21cm cosmology, axion string-induced effects

ConclusionsAI in Science
A program of SCHMIDT FUTURES



Thank you!



WST emulator
• Quantify emulator error using test Abacus mocks

• Test c001-c004 cosmologies
• 1000 hod configurations for each, 4x1000=4000 test mocks  

• Obtain total WST covariance

Data covariance obtained 
from 2048 Patchy mocks

Covariance contribution 
from emulator error

Phase correction

Valogiannis et al., 2023
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Image Synthesis/Generation

Cheng et al. (2023)
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• WST coefficients can also be used to generate fields with similar properties/texture

Image Synthesis/Generation

Cheng & Benard (2021a)
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Weak Lensing map



• Application to various physical fields

Image Synthesis/Generation

Cheng et al. (2023)
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Generated



• Application to various physical fields

Image Synthesis/Generation

Cheng & Benard (2021b)
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• Application to various physical fields

Image Synthesis/Generation

Cheng & Benard (2021b)
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Thank you!

Valogiannis et al., 2023

Constraints on full set of parameters, including HOD
• WST able to constrain HOD parameters
• Evidence of non-zero velocity bias

 



WST Constraints from BOSS CMASS data!

Valogiannis et al., 2023
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• Covariance matrix obtained from N=2048 PATCHY mocks (S. A. Rodriguez-Torres et al., 2016)

 

Likelihood analysis

Valogiannis et al., 2023
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• Addition of emulator error increases 1σ 
errors disproportionally for WST (vs ξ(r))

• In some cases (e.g. 𝜎,	) this effect almost 
completely masks the gains compared to 
ξ(r)

 

Impact of emulator error

Valogiannis et al., 2023



• Joint analysis results robust against choice of 
𝜔- prior !

 

Impact of 𝜔! prior

Valogiannis et al., 2023



 

Sensitivity to small scales

Valogiannis et al., 2023
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• Sharp top hat-k filter confirms that we 
are not sensitive to modes k>0.8 h/Mpc 

 



Effect of n(z) on wst estimator
• BOSS CMASS sample has varied n(z)
• Clustering approximated using Abacus mock of constant 
n(z) = 2.9x10<= D"

EFG"
 .

• Good enough approximation for 2-point function Yuan et 
al., 2022b)

• Not sure for WST, density-dependent/field-level statistic
• Downsample to match constant n(z) = 2.9x10<= D"

EFG"
 

Valogiannis et al., 2023



Valogiannis & Dvorkin 2022a

‘cb’, z=0 ‘m’, z=0 

Great improvement over P(k)!

But, “Beware of fake νs” !
(Bayer et al., 2021, arXiv:2108.04215)



• Theory model

• To model WST (and P(k)) cosmological dependence, we use the approximation:
 

• + Additional derivative steps in the 7 HOD parameters

Likelihood analysis

Valogiannis & Dvorkin 2022b

Prediction for fiducial 
cosmology

Constructed from 
‘Linear derivative grid’ 

of cosmologies



Physical explanation of results

Why does the WST work so well??
WST key physical properties
• Successive WST layers pick up information >2-point function

• Known to encode additional information (eg. Hahn et al. 2020 & 2021)

   +
• Choice of q<1 highlights cosmic voids (under-densities)

• Sensitive cosmological probe (eg. Massara et al, 2020)

Enhanced cosmological information
• Parallels to marked M(k) (Massara et al, 2020)

✅

✅



Convergence

Valogiannis & Dvorkin 2022



Advantages of low-order statistics

Cheng & Menard, 2021



Localized Wavelets

Cheng & Menard, 2021


