Revealing the information content of galaxy *n*-point functions with simulation-based inference

Beatriz Tucci

Max Planck Institute for Astrophysics (MPA)

with Fabian Schmidt, Nhat-Minh Nguyen, Ivana Babić, Andrija Kostić, Martin Reinecke

BCCP Cosmology Seminar 2024

MAX-PLANCK-INS FUR ASTROPHYSI

© Ménard & Shtarkman

Which information does the 3D distribution of galaxies give us?

Initial conditions of the Universe time

(Slice of 3D field)

Final distribution of galaxies

Which information does the 3D distribution of galaxies give us?

Other particles during **inflation**?

Initial conditions of the Universe Nature of **dark matter** and **dark energy**?

> Ultimate theory of **gravity**?

Hierarchy of **Neutrino** masses?

Final distribution of galaxies

Which information does the 3D distribution of galaxies give us?

Other particles during inflation?

Initial conditions of the Universe Nature of **dark matter** and **dark energy**?

> Ultimate theory of **gravity**?

Hierarchy of Neutrino masses?

Cosmological parameters $\boldsymbol{\theta}$

Final distribution of galaxies

Inferring the cosmological parameters: standard techniques & challenges

Observation

inference

theory(θ)

Bayesian inference

Prior

Bayesian inference

Posterior Likelihoo
$$\mathcal{P}(oldsymbol{ heta}|\mathbf{D}) \propto \mathcal{L}(\mathbf{D}|$$

E.g., assuming that the data vector is Gaussian distributed:

$$-2\ln \mathcal{L}(\mathbf{D}|\boldsymbol{\theta}) = (\mathbf{D} - \mathbf{T}(\boldsymbol{\theta}))$$

Prior od $oldsymbol{ heta})\pi$ $(\boldsymbol{\theta})$

P(k) power spectrum

*

The EFTofLSS: our theory for galaxy clustering

The EFTofLSS

"coarse-graining"

$$\delta^{(1)}_{\Lambda}(oldsymbol{k}) = W_{\Lambda}(k)\delta^{(1)}(oldsymbol{k})$$

Borrowed from Pierre Zhang

Dodelson & Schmidt Modern Cosmology 2020

$$\delta_g(\boldsymbol{k}, z) = \delta_{g, \text{det}}(\boldsymbol{k}, z) + \delta_{g, \text{stoch}}(\boldsymbol{k}, z)$$

Cooray & Sheth (2002)

Time

$$\delta_{g}(\boldsymbol{k}, z) = \delta_{g, \det}(\boldsymbol{k}, z) + \delta_{g, \operatorname{stoch}}(\boldsymbol{k}, z) \qquad \operatorname{Time} \\ = \sum_{O} b_{O}(z)O(\boldsymbol{k}, z) + \varepsilon(\boldsymbol{k}, z) \\ [b_{O}] \qquad \operatorname{Free \ bias}_{parameters} \\ O[\delta](\boldsymbol{k}) = \int_{\boldsymbol{p}_{1}, \dots, \boldsymbol{p}_{n}} \delta_{D}(\boldsymbol{k} - \boldsymbol{p}_{1\dots n}) \underbrace{S_{O}(\boldsymbol{p}_{1}, \dots, \boldsymbol{p}_{n})}_{operator "convolution"} \delta(\boldsymbol{p}_{1}) \cdots \delta(\boldsymbol{p}_{n}) \\ \hline \end{array}$$

$$\begin{split} \delta_g(\boldsymbol{k},z) &= \delta_{g,\text{det}}(\boldsymbol{k},z) + \delta_{g,\text{stoch}}(\boldsymbol{k},z) \\ &= \sum_O b_O(z)O(\boldsymbol{k},z) + \varepsilon(\boldsymbol{k},z) \\ &\langle \varepsilon(\boldsymbol{k},z)\varepsilon(\boldsymbol{k}',z)\rangle' \propto \sigma_{\varepsilon}^2(k) \\ &\sigma_{\varepsilon}(k) = \overline{\sigma_{\varepsilon,0}} \left[1 + \overline{\sigma_{\varepsilon,k^2}}k^2\right] \\ & \quad \mathbf{Free \ stochastic} \\ & \quad \mathbf{parameters} \quad \left\{ \boldsymbol{\sigma}_{\varepsilon} \right\} \end{split}$$

$$egin{aligned} \delta_g(m{k},z) &= \delta_{g, ext{det}}(m{k},z) + \delta_{g, ext{stoch}}(m{k},z) \ &= \sum_O b_O(z) O(m{k},z) + arepsilon(m{k},z) \end{aligned}$$

$$\{\boldsymbol{\theta}, \{b_O\}, \{\sigma_{\varepsilon}\}\}$$

Time

Case study: inferring the cosmological parameter σ_8

expansion

growth of structure $D'' + aHD' = 4\pi G\bar{\rho}D$

$T(\boldsymbol{\theta})$ $P_g(k) = \langle \delta_g(\boldsymbol{k}) \delta_g(\boldsymbol{k}') \rangle'$

$\delta_g(\mathbf{k}) = b_1 \delta(\mathbf{k}) + \varepsilon(\mathbf{k})$

 $P_g(k) = \langle \delta_g(k) \delta_g(k') \rangle'$

 $T(\boldsymbol{\theta})$

 $T(\boldsymbol{\theta})$

 $\delta_q(\boldsymbol{k}) = b_1 \delta(\boldsymbol{k}) + \varepsilon(\boldsymbol{k})$ $P_{q}(k) = \langle \delta_{g}(\mathbf{k}) \delta_{g}(\mathbf{k}') \rangle' \qquad P_{q}^{\text{tree}}(k) = b_{1}^{2} P_{L}(k) + P_{\varepsilon}$ $P_L(k) = \langle \delta^{(1)}(\boldsymbol{k}) \delta^{(1)}(\boldsymbol{k}') \rangle'$

 $T(\boldsymbol{\theta})$

 $\delta_a(\mathbf{k}) = b_1 \delta(\mathbf{k}) + \varepsilon(\mathbf{k})$ $P_g(k) = \langle \delta_g(\mathbf{k}) \delta_g(\mathbf{k}') \rangle' \qquad P_q^{\text{tree}}(k) = b_1^2 P_L(k) + P_{\varepsilon}$ $P_L(k) = \langle \delta^{(1)}(k) \delta^{(1)}(k') \rangle' \\ \propto \sigma_8^2$

 $T(\boldsymbol{\theta})$ $P_g(k) = \langle \delta_g(\boldsymbol{k}) \delta_g(\boldsymbol{k}') \rangle'$

$$\delta_g(\mathbf{k}) = b_1 \delta(\mathbf{k}) + \varepsilon(\mathbf{k})$$
$$P_g^{\text{tree}}(k) = b_1^2 P_L(k) + P_{\varepsilon}$$
$$P_L(k) = \langle \delta^{(1)} \\ \propto \sigma_8^2 \rangle$$

Bias parameter and σ_8 are degenerated in the tree-level galaxy power-spectrum

$$\delta_g(\mathbf{k}) = b_1 \delta(\mathbf{k}) + \varepsilon(\mathbf{k})$$
$$P_g^{\text{tree}}(k) = b_1^2 P_L(k) + P_{\varepsilon}$$
$$P_L(k) = \langle \delta^{(1)} \\ \propto \sigma_8^2 \rangle$$

Bias parameter and σ_8 are degenerated in the tree-level galaxy power-spectrum

How to break this degenera

P(k) power spectrum

 $B(k_1,k_2,k_3)$ bispectrum

10

Degeneracy breaking with bispectrum

 $B_g^{\text{tree}}(k_1, k_2, k_3) \supset b_1^2 \left[b_2 B_{\delta^2}(k_1, k_2, k_3) + 2b_{K^2} B_{K^2}(k_1, k_2, k_3) \right]$

Degeneracy breaking with bispectrum

 $B_a^{\text{tree}}(k_1, k_2, k_3) \supset b_1^2 \left[b_2 B_{\delta^2}(k_1, k_2, k_3) + 2b_{K^2} B_{K^2}(k_1, k_2, k_3) \right]$

lapted from Desjacques, Jeong පී Schmidt (2016)

Increasing complexity

 $k_{\rm max} = 0.12 h \, {\rm Mpc}^{-1}$ $\Delta k = 2k_f$ $L = 2000 h^{-1} \mathrm{Mpc}$ **Increasing complexity**

 $k_{\rm max} = 0.12 h \, {\rm Mpc}^{-1}$ $\Delta k = 2k_f$ $L = 2000 h^{-1} \mathrm{Mpc}$

Part I

Simulation-based inference (SBI)

SBI: the main idea

 $\mathcal{P}(\boldsymbol{\theta}|\mathbf{D}) \propto \mathcal{L}(\boldsymbol{b},\boldsymbol{\theta})\pi(\boldsymbol{\theta})$

 $\mathbf{T}(\boldsymbol{\theta}) \sim \operatorname{simulator}(\boldsymbol{\theta})$

$$\{(\boldsymbol{\theta}_n, \mathbf{x}_n)\}_{n=1}^{N_{\mathrm{sim}}}$$

$$\{(\boldsymbol{\theta}_n, \mathbf{x}_n)\}_{n=1}^{N_{\mathrm{sim}}}$$

Neural Posterior Estimation (NPE)

Posterior

 $q_{\phi}(\mathbf{x}|\boldsymbol{\theta}) \longrightarrow \hat{p}(\boldsymbol{\theta}|\mathbf{x}_o) \propto q_{\phi}(\mathbf{x}_o|\boldsymbol{\theta})p(\boldsymbol{\theta})$

How to train the model? (For example, NLE)

 $\mathcal{L} = \mathbb{E}_{p(\theta)} \left[D_{\mathrm{KL}} \left[p(\mathbf{x}|\boldsymbol{\theta}) || q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] \right]$

loss function

target density

neural network trainable parameters

How to train the model? (For example, NLE)

$$\mathbb{E}_{p(\boldsymbol{\theta})} \left[D_{\mathrm{KL}} \left[\boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta}) \mid \mid q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] \right] = \int d\boldsymbol{\theta} \, p(\boldsymbol{\theta})$$

target density

neural network trainable parameters

 $\boldsymbol{\vartheta} \int d\mathbf{x} \, p(\mathbf{x}|\boldsymbol{\theta}) \, \log\left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\theta}}(\mathbf{x}|\boldsymbol{\theta})}\right)$

How to train the model? (For example, NLE)

$$\mathbb{E}_{p(\boldsymbol{\theta})} \left[D_{\mathrm{KL}} \left[p(\mathbf{x}|\boldsymbol{\theta}) \mid | q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] \right] = \int d\boldsymbol{\theta} \ p(\boldsymbol{\theta})$$
target density
neural network
trainable parameters
$$\int d\boldsymbol{\theta} \ d\mathbf{x} \ p(\boldsymbol{\theta}) = \int d\boldsymbol{\theta} \ d\mathbf{x} \ p(\boldsymbol{\theta})$$

$$p(\boldsymbol{\theta}, \mathbf{x}) = p$$

 $\int d\mathbf{x} \, p(\mathbf{x}|\boldsymbol{\theta}) \, \log\left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})}\right)$ $p(\boldsymbol{\theta}, \mathbf{x}) \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{a(\mathbf{x}|\boldsymbol{\theta})} \right)$

How to train the model? (For example, NLE)

$$\mathbb{E}_{p(\boldsymbol{\theta})} \left[D_{\mathrm{KL}} \left[p(\mathbf{x}|\boldsymbol{\theta}) \mid | q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \right] \right] = \int d\boldsymbol{\theta} \ p(\boldsymbol{\theta})$$
target density
neural network
trainable parameters
$$= \int d\boldsymbol{\theta} \ d\mathbf{x} \ p(\boldsymbol{\theta}) = -\mathbb{E}_{m}(\boldsymbol{\theta} \ \mathbf{x}) \left[d\boldsymbol{\theta} \right]$$

 $\int d\mathbf{x} \, p(\mathbf{x}|\boldsymbol{\theta}) \, \log\left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\theta}}(\mathbf{x}|\boldsymbol{\theta})}\right)$ $p(\boldsymbol{\theta}, \mathbf{x}) \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{q_{\boldsymbol{\theta}}(\mathbf{x}|\boldsymbol{\theta})} \right)$ $\mathbb{E}_{p(\boldsymbol{\theta},\mathbf{x})}[\log q_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})] + \text{const.}$

the loss function we wish to minimize is independent of the target density form!

How to train the model? (For example, NLE)

$$\begin{split} \mathbb{E}_{p(\boldsymbol{\theta})} \left[D_{\mathrm{KL}} \left[\begin{array}{c} \boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta}) \mid | \ \boldsymbol{q}_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta}) \ \right] \right] &= \int d\boldsymbol{\theta} \ \boldsymbol{p}(\boldsymbol{\theta}) \int d\mathbf{x} \ \boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta}) \ \log \left(\frac{\boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta})}{\boldsymbol{q}_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right) \\ &= \int d\boldsymbol{\theta} \ d\mathbf{x} \ \boldsymbol{p}(\boldsymbol{\theta}, \mathbf{x}) \ \log \left(\frac{\boldsymbol{p}(\mathbf{x}|\boldsymbol{\theta})}{\boldsymbol{q}_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})} \right) \\ &= -\mathbb{E}_{p(\boldsymbol{\theta},\mathbf{x})} [\log \boldsymbol{q}_{\boldsymbol{\phi}}(\mathbf{x}|\boldsymbol{\theta})] + \text{ const.} \\ &\approx -\frac{1}{N_{\mathrm{sim}}} \sum_{n=1}^{N_{\mathrm{sim}}} \log \boldsymbol{q}_{\boldsymbol{\phi}}(\mathbf{x}_{n}|\boldsymbol{\theta}_{n}) + \text{ const.} , \\ &\left[\{(\boldsymbol{\theta}_{n},\mathbf{x}_{n})\}_{n=1}^{N_{\mathrm{sim}}} \right] \end{split}$$

Normalizing Flows

Tucci, Schmidt (2023)

Normalizing Flows

Tucci, Schmidt (2023)

$$q_{\phi}(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{z}_{0}|\mathbf{0}, \mathbf{I}) \prod_{t=1}^{T} \left| \det \left(\frac{\partial f_{t}}{\partial \mathbf{z}_{t-1}} \right) \right|^{-1}$$

Credits: Miles Cranmer

data

Simulation-based inference for galaxy clustering

On the Gaussianity assumption of the n-point functions

On the Gaussianity assumption of the n-point functions

breaking of central limit theorem on large scales induces deviation from the Gaussian likelihood assumption!

On the Gaussianity assumption of the n-point functions

The forward model based on the EFTofLSS & the bias expansion

- A **fast** forward model based on the EFTofLSS that solves the gravitational evolution of all modes in a lattice up to the cutoff scale
- nLPT and incorporates bias and stochastic parameters, marginalizing over reasonable models of galaxy formation
- Easier to deal with redshift space, masks and systematic effects

The forward model

An n-th order Lagrangian Forward Model for Large-Scale Structure Schmidt (2021)

sample from field-level Likelihood

Testing SBI on Euclid-like mock data Breaking degeneracy between σ_8 and bias parameters with the galaxy power-spectrum and bispectrum

Tucci & Schmidt (2024) **JCAP**

Cosmological constraints

 $N_{\rm sim} = 10^5$ $k_{\rm max} = \Lambda = 0.1 h {\rm Mpc}^{-1}$ $D = N_{\rm bin} + N_{\rm tri} = 33$

Gaussian-likelihood

 $\frac{\text{mple covariance}}{\text{alvtical covariance}} \stackrel{\text{mple covariance}}{\rightarrow} \mathbf{x}_n \sim \mathcal{N}\left(\langle \mathbf{x}_n \rangle, \text{Cov}[\mathbf{x}_o]\right)$

Tests of inference

Simulation-based calibration

Convergence

SBI on dark-matter halos Breaking degeneracy between σ_8 and bias parameters with the galaxy power-spectrum and bispectrum

Nguyen, Schmidt, **Tucci** et al. (2024) PRL (accepted)

Inference setup: halo samples

	SNG	
Redshift	z = 0.50	
$V[h^{-3}\mathrm{Mpc}^3]$	2000^{3}	
$\bar{n}_g \left[h^3 \mathrm{Mpc}^{-3} \right]$	1.3×10^{-3}	

Two scale cuts:

 $k_{\rm max} = 0.1 h {\rm Mpc}^{-1} \ \mathcal{C} \ k_{\rm max} = 0.12 h {\rm Mpc}^{-1}$

Uchuu
$$z = 1.03$$

 2000^{3}
 3.6×10^{-3}

SBI on halos

What if we add the galaxy **trispectrum**? Breaking degeneracy between σ_8 and bias parameters with power-spectrum, bispectrum and trispectrum on dark-matter halos

Tucci & Schmidt (in prep.)

Trispectrum: the estimator

Jung+23, Coulton+23, Goldstein+24

Trispectrum: **preliminary** results

 $k_{\rm max} = 0.1 h \, {\rm Mpc}^{-1}$

Uchuu halos at z=1

Brute force approach: 10⁶ simulations

SBI with LEFTfield: Conclusions

- Robust analysis with EFTofLSS and bias expansion
- LEFTfield allows for **fast** analysis in **cosmological volumes** with convergence and posterior **diagnostics** tests
- Need order of 10⁵ simulations for convergence (investigating how we can improve that)
- SBI allows for cosmological inference using trispectrum, which is unfeasible with standard inference techniques
- No need to assume Gaussian likelihood, explicit loop or covariance calculations

Inferring the cosmological parameters: challenges

Inferring the cosmological parameters: challenges

is there a better way?

Part II

Field-level Bayesian inference (FBI)

FBI: the main idea

Observation

Credits: Julia Stadler

$\stackrel{\rm EFT}{\longrightarrow}$ likelihood

Field level Likelihood

$$\ln \mathcal{L}\left(\delta_{g}^{\text{obs}} | \delta_{g,\text{det}}[\boldsymbol{\theta}, \delta_{\Lambda}^{(1)}, \{b_{O}\}], \{\sigma_{\varepsilon}\}\right) = -\frac{1}{2} \sum_{k < k_{\text{max}}} \left[\frac{1}{\sigma_{\varepsilon}^{2}(k)} \left| \delta_{g}^{\text{obs}}(\boldsymbol{k}) - \delta_{g,\text{det}}[\boldsymbol{\theta}, \delta_{\Lambda}^{(1)}, \{b_{O}\}](\boldsymbol{k}) \right|^{2} + \ln[2\pi\sigma_{\varepsilon}^{2}(k)] \right]$$

$$+ \text{MMC}$$

$$\mathcal{P}\left(\boldsymbol{\theta}, \delta_{\Lambda}^{(1)}, \{b_O\}, \{\sigma_{\varepsilon}\} \middle| \delta_g^{\mathrm{obs}}
ight)$$

Full posterior including initial conditions!

Mode by mode data and theory comparison!

1

- How much information is retained at the galaxy density field? Breaking degeneracy between σ_8 and bias parameters on dark-matter halos
 - Nguyen, Schmidt, **Tucci** et al. (2024) PRL (accepted)

3rd order bias expansion

$$O_{\text{det}} \in \left[\delta, \delta^2, K^2, \delta^3, K^3, \delta K^2, O_{\text{td}}, \nabla^2 \delta\right]$$
$$O_{\text{stoch}} \in \left[\varepsilon, \nabla^2 \varepsilon\right]$$

Nhat-Minh Nguyen (IPMU)

Fabian Schmidt (MPA)

Apples-to-apples comparison

Same halos Same scale cuts

A lot of reliable information at the field-level!

SNG halos

3.5 improvement factor!

Uchuu

On the Bispectrum stochasticity

Perturbation Theory

 $\langle \delta_g(k_1)\delta_g(k_2)\delta_g(k_3) \rangle_{\text{stoch}}^{'\text{LO}} = B_{\varepsilon} + 2b_1 P_{\varepsilon\varepsilon\delta}(P_{\mathrm{m}}(k_1) + 2 \text{ perm.})$

Forward Model with Non-Gaussian Noise

$$\langle \delta_g(k_1) \delta_g(k_2) \delta_g(k_3) \rangle_{\text{stoch}}^{'\text{LO}} = 6c_{\varepsilon}^{\text{NG}} P_{\varepsilon}^2 + 2b_1 P_{\varepsilon} \sigma_{\varepsilon\delta} (P_{\text{m}}(k_1)$$

 $\delta_g(\mathbf{x},\tau) = \delta_{g,\text{det}}(\mathbf{x},\tau) + \varepsilon(\mathbf{x},\tau) + \sigma_{\varepsilon\delta}(\tau)\varepsilon(\mathbf{x},\tau)\delta(\mathbf{x},\tau) + c_{\varepsilon}^{\text{NC}}$

+2 perm.)

$$\mathcal{G}(\tau)\varepsilon^2(\mathbf{x},\tau) \qquad \quad \varepsilon \sim \mathcal{N}(0,\sigma_{\varepsilon}^2)$$

What if we add the **trispectrum**?

Tucci & Schmidt (in prep.)

Trispectrum: **preliminary** results

 $k_{\rm max} = 0.1 h \, {\rm Mpc}^{-1}$

Uchuu halos at z=1

Brute force approach: 10⁶ simulations

Field-level inference of BAO scale Constraining the BAO scale with FBI

Babić, Schmidt & **Tucci** (2022) Babić, Schmidt & **Tucci** (2024)

Can we constrain the BAO scale with FBI?

$$\beta \equiv r_s/r_{\rm fid}$$

Ivana Babić (MPA)

Babić, Schmidt & <u>Tucci</u> (2022) Babić, Schmidt & <u>Tucci</u> (2024)

Conclusion & Next Steps

- We demonstrated to have **unbiased** and **accurate** results from halo catalogs using LEFTfield for SBI and FBI
- Apple-to-apple comparison of field-level inference and SBI shows that there is a lot of **reliable** information beyond 2+3(+4)-point functions in the 3D maps of galaxies

Next steps to connect with observations:

- Include more observational effects
- Expand the cosmological parameter space
- Explore summaries in SBI

Beatriz Tucci tucci@mpa-garching.mpg.de