21 cm Intensity Mapping: A New Cosmological Tool?

Peter Timbie Department of Physics UW-Madison

LBNL Research Progress Meeting 5 December 2019

領实验時列

Cosmic Questions

I. Cosmic Questions

II. 21 cm astrophysics

III. Current Measurements

IV. Future Opportunities

Cosmic Expansion

Friedmann Equation & Equation of State

Flat universe case

$$H(a) = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\rho_{mat} + \rho_{rad} + \rho_{\Lambda} + \rho_{DE}\right)$$

$$?$$

$$?$$

$$\sum_{w=0}^{1/a^3} \sum_{w=1/3}^{1/a^4} const w(a) = w_0 + (1-a)w_a$$

$$\frac{P}{\rho} = w$$

APpuquean 1888-1925

Distance – Redshift relation depends on Λ or DE

Dark Energy Task Force 2006

How to measure effect of dark energy on expansion?

- Measure D vs z with standard candles (supernovae)
- Measure D vs z with *standard rulers*
- Measure *growth* of structure vs z
- All of the above!

CMB fluctuations are a standard ruler: Baryon Acoustic Oscillations

Planck Collaboration

Galaxy surveys show similar structure in 3D

Sloan Digital Sky Survey

Galaxy surveys see similar structures in 3D

How to observe BAO standard ruler vs redshift?

- Galaxy redshift surveys
 - Sloan Digital Sky Survey (SDSS)
 - Large Synoptic Survey Telescope (LSST)
 - Dark Energy Spectroscopic Instrument (DESI)
 - Euclid
 - Etc.
- 21 cm intensity mapping

I. Cosmic Questions II. 21 cm astrophysics III. Current Measurements IV. Future Opportunities

Radio astronomy with the hydrogen 21 cm line (HI)

HI and Optical Surveys Detect Similar Structure to $z \sim 0.07$

Haynes et al. (2011)

21 cm timeline

Pritchard & Loeb (2012)

21 cm surveys could probe huge cosmic volume

Galactic foregrounds are ~ 10⁴ X brighter than HI at z ~ 1!

Cosmic Challenge!

First Steps with the Green Bank Telescope

WiggleZ Dark Energy Survey: correlate with GBT survey

GBT map at 804 MHz (z = 0.775) before foreground removal

Masui et al. ApJ 763:L20 (2013)

GBT map at 804 MHz (z = 0.775) after foreground removal

Masui et al. ApJ 763:L20 (2013)

I. Cosmic Questions

II. 21 cm astrophysics

III. Current Measurements

IV. Future Opportunities

Early 'cylinder' transit radio telescope at CMU

Hydrogen intensity mapping experiments: the next stage

NSIN

Radio Interferometers measure Fourier modes of sky image

NRAO Astronomy 534

The Tianlai Pathfinders

The Tianlai Pathfinders

The Tianlai Pathfinders

Currently observing: 700 - 800 MHz (1.03 > z > 0.78)

Will retune to: 1330 – 1430 MHz (0.07 > z > -0.01)

大镇实验阵刘

Tianlai Participants

China: X. Chen (PI at NAOC), CETC-54, Institute of Automation, Hangzhou Dianzi U., Xinjiang Astron. Obs.

US: J. Peterson (CMU) P. Timbie, S. Das, T. Oxholm, A. Phan (Wisconsin) A. Stebbins, J. Marriner (Fermilab) G. Tucker (Brown)

France: R. Ansari, J.E Campagne, M. Moniez, O. Perdereau (LAL/IN2P3) J.-M. Martin, P. Colom (Obs. Paris)

Canada: U-L. Pen (CITA)

The concept of "tianlai"-- the heavenly sound was coined by ancient Chinese philosopher Zhuang-Zi (Chuang-Tzu, 369 BC-286 BC)

Tianlai signal processing

ROACH2 FPGA-based
 correlator for dish array
 → 0.4 TB/day

Custom DSP-based correlator for cylinders →3.3 TB/day

•

First sky maps with Tianlai cylinders

NVSS (1.4GHz) bright sources

1 redshift slice 750 MHz

Richard Shaw: foreground removal

ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES Shaw, Sigurdson, Pen, Stebbins, Sitwell ApJ 781 2014

Foreground removal with signal/contamination eigenmodes

- requires model for signal and for foregrounds & noise

Include simulations of polarized foregrounds and 'mode-mixing'

Simulations for CHIME recover unbiased power spectra when:

- per-feed beamwidth is measured to 0.1%
- amplifier gains known to 1% within each minute

Polarized Foreground (Q)

21cm Signal

Baryon Acoustic Oscillation forecasts

I. Cosmic Questions

- II. 21 cm astrophysics
- III. Current Measurements

IV. Future Opportunities

Packed Ultra-wideband Mapping Array (PUMA): 'Stage II' intensity mapping

- 0.3 < z < 6 (1100 MHz 200 MHz)
 - Close-packed 6 m dishes:
 - 5000 petite, 32,000 full, 64,000 super
 - Drift scanning (non-tracking)
 - Single wide-bandwidth feed/receiver
 - FFT beamforming/correlator
 - Deploy late 2020's, observe for several years ASTRO2020 arXiv:1907.12259

PUMA: expansion history

Challenges & Opportunities

領实验時刻

- Foreground removal algorithms
- Array uniformity & stability & calibration
- Data rate
- Cross-correlation with galaxy surveys NCCS

