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A 3-D map of the universe

each dot a galaxy 
with redshift
(~radial distance) SDSS/BOSS survey



How to summarize this map?

1) pairs of galaxies
(power spectrum)

2) triangles of galaxies
(bispectrum)

3) …

4) “empty regions”
(cosmic voids)
– size distribution
– void-galaxy pairs
– …
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What can voids do for us?

● not virialized → ideal for 
redshift-space distortions, 
Alcock-Paczynski
○ matter density Ωm
○ growth of structure f/b

● complementary to correlation 
functions since voids upweight 
underdense regions
○ corrections to general relativity
○ dark energy
○ neutrino mass

[FLAMINGO]
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[Gerbino&Lattanzi]



Voids & neutrino mass: forecasts

[Kreisch+2021] [Bayer+2021]

QUIJOTE halos (1 Gpc/h)

[Contarini+2022]

“Euclid” spec-z galaxies (Vdn+b) 



Problem formulation

● obtain constraints on neutrino mass 
sum, Σm𝜈

● using BOSS CMASS NGC
● summary statistics:

○ galaxy auto-power spectrum
○ void size function
○ void-galaxy cross power 

spectrum

● model based on simulations
● perform implicit-likelihood inference



Void finding

● currently no universally 
accepted void definition

● simulation based analysis → 
can choose without biasing

● opt for ZOBOV / VIDE
● Voronoi tessellation, 

watershed transform 

[Sutter+2012]
[Neyrinck+2008]



Why simulation-based & implicit-likelihood inference

● no analytic model currently available to 
describe galaxy auto power, void size 
function, void profiles consistently → need 
simulations

● likelihood function of Poisson/Gauss mixture 
unknown

● also: 17-D emulation w/ limited simulations 
difficult



Implicit Likelihood Inference

Assume that we have a simulator that can evaluate the 
model m(θ, η, ζ) to required accuracy.

Use simulated samples to train neural approximator:

P(parameters | data) = 
P(data | parameters)   P(parameters)

P(data)

neural likelihood estimation neural posterior estimation

neural ratio estimation



Gravity-only simulations Need to simulate according to prior
CMASS NGC

FastPM 2.5 Gpc/h sidelength
28003 CDM particles + neutrinos
ΛCDM prior: Gaussian Planck x 2

[Bayer+2021]

69 at fiducial point

127 cosmo-varied



Gravity-only simulations

“CMB parameters” “LSS parameters”



Choosing halo occupation distribution (HOD)

● global optimization over partly discrete spaces to identify 
parameterization & prior ranges

● 1st iteration: target=QUIJOTE, statistic=power spectrum
● 2nd iteration: target=data, statistic=void size function

use Rockstar halos use T/U assembly bias

lo
ss



Choosing halo occupation distribution (HOD)

Converged at 11-parameter model:

● Mmin = minimum mass to host central, σlog M = scatter in that relation
● M0 = minimum mass to host satellite, M1 = typical mass to host satellite, α = number of 

satellites
● ηcen, ηsat = velocity biases
● μ(Mmin), μ(M1) = linearized redshift evolution
● P1, abias = secondary bias parameters for centrals (based on kinetic to potential energy 

ratio)

Likely not ideal!



Lightcones

● 20 snapshots [probably excessive]
● extrapolate using host halo velocity
● cuboid remapping
● survey mask
● fiber collisions
● Downsample to n(z)



Data vector



Compression

● linear score compression assuming Gaussian likelihood (MOPED)
● to 17-D (# parameters)



Augmentations

● cosmo-varied simulations have same random seed (historical reasons…)
● but we can generate quasi-independent realizations
● 2 remaps x 6 transpositions x 8 reflections = 96
● How independent? Check using simulations at fiducial point
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● Withhold 13 simulations for testing (covering M𝜈 prior well)
● For each simulation, draw ~230 HODs & 8 augmentations
● Gives ~170k training samples
● Train with Θ = { M𝜈, log Mmin, μ(Mmin) } to have additional diagnostics (also did 

some runs with other HOD parameters)

Training & inference



Internal consistency checks

rank statistics q-q plot

test posterior calibration by running inference on mocks from prior 



Main posteriors

kmax = 0.15

[Bayer+2021]



Main posteriors

kmax = 0.15 kmax = 0.20



Compare to posteriors on fiducial mocks

Not obviously wrong, but maybe systematics on large 
scales? (e.g., galaxy weights in void-galaxy cross power)
– Or: the “augmentations” don’t work well enough



Broadening of posteriors

statistical fluctuation?

Including void statistics sometimes leads to larger upper bound on M𝜈 
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Broadening of posteriors

statistical fluctuation? inefficient compression?

Including void statistics sometimes leads to larger upper bound on M𝜈 

including voids tightens 
posterior on constrained HOD 
parameters

One-sided posteriors are different 
from “Gaussian” ones



Comparison to EFTofLSS



Comparison to EFTofLSS

EFT possible issues:
● prior dependence, volume 

effects
● redshift evolution?

effect of broadening 
EFT prior



Comparison to EFTofLSS

EFT possible issues:
● prior dependence, volume 

effects
● redshift evolution?

Our possible issues:
● prior volume effects
● inaccurate simulations 

(neutrino mass impact?)
● “augmentation” procedure
● …



Quadrupole

Qualitative agreement with EFT result
→ gives some confidence that 
simulations are accurate



Influence of void size

constraint dominated by voids 
with 40 < radius / h-1 Mpc < 50



Simulation budget

Appear to have enough simulations.
But “augmentation” is the critical point.



Summary

● constrained neutrino mass sum from BOSS CMASS NGC
● using galaxy auto power spectrum, void size function, void-galaxy 

cross power spectrum
● modeling based on FastPM+HOD simulations
● implicit likelihood inference with neural ratio estimation
● void statistics appear to contribute a little
● qualitative agreement with EFTofLSS results, but differences
● possible future improvements:

○ simulation layout
○ HOD parameterization
○ compression
○ “perturbative” implicit likelihood inference
○ survey systematics
○ …





Void only posteriors



Full posteriors



EFT posteriors


