Neutrino mass constraint from an Implicit Likelihood Analysis of BOSS voids

DESI lunch, 10/4/23

Leander Thiele (Princeton University)

with Elena Massara, Alice Pisani, ChangHoon Hahn, David Spergel, Shirley Ho, Benjamin Wandelt

arXiv:2307.07555

A 3-D map of the universe

SDSS/BOSS survey

How to summarize this map?

- 1) pairs of galaxies (power spectrum)
- 2) triangles of galaxies (bispectrum)
- 3) ...

. . .

4) "empty regions" (cosmic voids)
– size distribution
– void-galaxy pairs

[FLAMINGO]

What can voids do for us?

- not virialized → ideal for redshift-space distortions, Alcock-Paczynski
 - matter density Ω_m
 - growth of structure f/b
- complementary to correlation functions since voids upweight *underdense* regions
 - corrections to general relativity
 - dark energy
 - neutrino mass

Voids & neutrino mass: forecasts

Problem formulation

- obtain constraints on neutrino mass sum, Σm,
- using BOSS CMASS NGC
- summary statistics:
 - galaxy auto-power spectrum
 - \circ void size function
 - void-galaxy cross power spectrum

- model based on simulations
- perform implicit-likelihood inference

Void finding

- currently no universally accepted void definition
- simulation based analysis → can choose without biasing
- opt for ZOBOV / VIDE
- Voronoi tessellation, watershed transform

Why simulation-based & implicit-likelihood inference

- no analytic model currently available to describe galaxy auto power, void size function, void profiles consistently → need simulations
- likelihood function of Poisson/Gauss mixture unknown
- also: 17-D emulation w/ limited simulations difficult

Implicit Likelihood Inference

Assume that we have a simulator that can evaluate the model m(θ , η , ζ) to required accuracy.

Use simulated samples to train neural approximator:

Gravity-only simulations

Need to simulate according to prior CMASS NGC

FastPM 2.5 Gpc/h sidelength 2800³ CDM particles + neutrinos ACDM prior: Gaussian *Planck* x 2

Gravity-only simulations

Choosing halo occupation distribution (HOD)

- global optimization over partly discrete spaces to identify parameterization & prior ranges
- 1st iteration: target=QUIJOTE, statistic=power spectrum
- 2nd iteration: target=data, statistic=void size function

Choosing halo occupation distribution (HOD)

Converged at 11-parameter model:

- M_{min} = minimum mass to host central, $\sigma_{log M}$ = scatter in that relation
- M_0 = minimum mass to host satellite, M_1 = typical mass to host satellite, α = number of satellites
- η_{cen} , η_{sat} = velocity biases
- $\mu(M_{min}), \mu(M_1) = linearized redshift evolution$
- P₁, a_{bias} = secondary bias parameters for centrals (based on kinetic to potential energy ratio)

Likely not ideal!

Lightcones

- 20 snapshots [probably excessive]
- extrapolate using host halo velocity
- cuboid remapping
- survey mask
- fiber collisions
- Downsample to n(z)

Data vector

Compression

- linear score compression assuming Gaussian likelihood (MOPED)
- to 17-D (# parameters)

Augmentations

- cosmo-varied simulations have same random seed (historical reasons...)
- but we can generate quasi-independent realizations
- 2 remaps x 6 transpositions x 8 reflections = 96
- How independent? Check using simulations at fiducial point

Augmentations

- cosmo-varied simulations have same random seed (historical reasons...)
- but we can generate quasi-independent realizations
- 2 remaps x 6 transpositions x 8 reflections = 96
- How independent? Check using simulations at fiducial point

Training & inference

- Withhold 13 simulations for testing (covering M, prior well)
- For each simulation, draw ~230 HODs & 8 augmentations
- Gives ~170k training samples
- Train with $\Theta = \{ M_{\nu}, \log M_{min}, \mu(M_{min}) \}$ to have additional diagnostics (also did some runs with other HOD parameters)

Internal consistency checks

test posterior calibration by running inference on mocks from prior

 Σm_{ν} log M_{min} $\mu(M_{\rm min})$

overconfident

1.0

0.8

0.6

Main posteriors

Main posteriors

Compare to posteriors on fiducial mocks

Not obviously wrong, but maybe systematics on large scales? (e.g., galaxy weights in void-galaxy cross power) – Or: the "augmentations" don't work well enough

Broadening of posteriors

Including void statistics sometimes leads to larger upper bound on M_v statistical fluctuation?

Broadening of posteriors

Including void statistics sometimes leads to larger upper bound on M

statistical fluctuation?

inefficient compression?

Broadening of posteriors

Including void statistics sometimes leads to larger upper bound on M

statistical fluctuation?

One-sided posteriors are different from "Gaussian" ones

inefficient compression?

Comparison to EFTofLSS

Comparison to EFTofLSS

EFT possible issues:

- prior dependence, volume effects
- redshift evolution?

Comparison to EFTofLSS

EFT possible issues:

- prior dependence, volume effects
- redshift evolution?

Our possible issues:

- prior volume effects
- inaccurate simulations (neutrino mass impact?)
- "augmentation" procedure

Quadrupole

Qualitative agreement with EFT result \rightarrow gives some confidence that simulations are accurate

Influence of void size

Simulation budget

Appear to have enough simulations. But "augmentation" is the critical point.

Summary

- constrained neutrino mass sum from BOSS CMASS NGC
- using galaxy auto power spectrum, void size function, void-galaxy cross power spectrum
- modeling based on FastPM+HOD simulations
- implicit likelihood inference with neural ratio estimation
- void statistics appear to contribute a little
- qualitative agreement with EFTofLSS results, but differences
- possible future improvements:
 - simulation layout
 - HOD parameterization
 - compression
 - "perturbative" implicit likelihood inference
 - survey systematics
 - o ...

Void only posteriors

Full posteriors

EFT posteriors

