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Other things

SZ monopoles

WL & tSZ PDFs 
from halo model

WL PDF in HSC

primordial 
magnetic fields 
& H0 tension 
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Quick example: Emulation

Deep learning as an approximator for complicated physics



Baryonic feedback

active galactic nucleus

supernova



Mapping dark matter to baryons

electron pressure

∂U/∂t+divF=0



Mapping dark matter to baryons

neural network

dark matter density electron pressure

F = G m1 m2 / r
2

∂U/∂t+divF=0



Convolutional approach



Convolutional approach
Convolutional Neural Network (CNN)



Sparsity problem

tSZ signal dominated by 
massive halos → rare objects!
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Sparsity problem

tSZ signal dominated by 
massive halos → rare objects!

Convolutional approach not 
ideal.
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Set-based approach



Set-based approach

Analytic baseline



Set-based approach

Locality built in



Set-based approach

Probabilistic predictions



Set-based approach

Probabilistic predictions



Set-based approach

direct access to vectors → symmetries



Model performance

probabilistic predictions



Model performance

probabilistic predictions

analytic residuals network residuals



1) Understand the problem.

2) Have you tried linear regression / PCA / … ?

3) ML gives strictly what we ask it.

4) Decompose if possible.

5) First attempt rarely works. Rethink & rewrite.



The past decade in deep learning



Artificial Intelligence

expert systems…
(e.g., DeepBlue)

machine learning

deep learningshallow/symbolic learning
(e.g., decision tree)



Deep learning topography

input

output

latents

Universal Approximation Theorem:
Feedforward neural network can 
approximate “any” function given 
sufficient capacity.



Deep learning topography

input

output

latents

Universal Approximation Theorem:
Feedforward neural network can 
approximate “any” function given 
sufficient capacity.

model (neural network)training input

training target

cost/loss function

backpropagation

Vanilla Training Algorithm



Deep learning topography

input

output

latents

“It is only slightly overstating the case to say that 
physics is the study of symmetry.” [Anderson]

● translational sym: convolutional net
● time sym: recurrent net, transformer
● permutation sym: DeepSet, graph net
● …

Universal Approximation Theorem:
Feedforward neural network can 
approximate “any” function given 
sufficient capacity.



(r)evolution of depth lotion
Polaroid 
camera airliner

Norfolk 
terrier
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(r)evolution of depth ● activation functions
● residual connections
● stochastic gradient descent
● learning rate
● regularization
● initialization
● …
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Complex problems take time

[F. Pretorius]

● activation functions
● residual connections
● stochastic gradient descent
● learning rate
● regularization
● initialization
● …



Large models overfit, right?

[Belkin+2019]



Over-parameterization miracle

[Belkin+2019]



Why does it work?



More Is Different

“The behavior of large and complex aggregates of 
elementary particles, it turns out, is not to be 
understood in terms of a simple extrapolation of the 
properties of a few particles. Instead, at each level of 
complexity entirely new properties appear.” [Anderson]



More Is Different

diversity universality

“The behavior of large and complex aggregates of 
elementary particles, it turns out, is not to be 
understood in terms of a simple extrapolation of the 
properties of a few particles. Instead, at each level of 
complexity entirely new properties appear.” [Anderson]



More Is Different



More Compute Is Different

2012: graphical processing units (GPUs) are perfect for deep learning

Krizhevsky+2012:

NVIDIA share price



Moore Is Different: cosmological simulations

[C. Modi]

(approximate)



Inference

Parameter estimation faced with intractable likelihoods



Bayesian inference

P(parameters | data) = 
P(data | parameters) P(parameters)

P(data)

[posterior]
[likelihood]

[evidence]

[prior]



Bayesian inference

P(parameters | data) = 
P(data | parameters) P(parameters)

P(data)

[posterior]
[likelihood] [prior]

[evidence]

More concretely:
θ=interesting parameters,   η=nuisance parameters,    ζ=initial conditions,
x=data,   m=model

P(x|θ) = ∫ Dη Dζ δ[ x - m(θ, η, ζ) ]

[observational errors modify integrand]



The need for Implicit Likelihood Inference

P(x|θ) = ∫ Dη Dζ δ[ x - m(θ, η, ζ) ]

In the traditional case:
P(x|θ) = ∫ Dη Gaussian[ x - μ(θ, η), Covariance ]

[evaluate remaining low-dimensional η integral with Monte Carlo]
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The need for Implicit Likelihood Inference

P(x|θ) = ∫ Dη Dζ δ[ x - m(θ, η, ζ) ]

In the traditional case:
P(x|θ) = ∫ Dη Gaussian[ x - μ(θ, η), Covariance ]

But what do we do if:
1) integration over initial conditions ζ is 

impossible analytically,
and/or
2) μ(θ, η) is difficult to approximate?

Assume that we have a simulator that can evaluate 
the model m(θ, η, ζ) to required accuracy.



Implicit Likelihood Inference

Assume that we have a simulator that can evaluate the 
model m(θ, η, ζ) to required accuracy.

Use simulated samples to train neural approximator:

P(parameters | data) = 
P(data | parameters)   P(parameters)

P(data)

neural likelihood estimation neural posterior estimation

neural ratio estimation



Neural ratio estimation (NRE)

P(parameters | data) = 
P(data | parameters)   P(parameters)

P(data)

● draw θ, θ’ ~ P(parameters)

● simulate xsim ~ P(data | θ) [drawing η, ζ]

● evaluate neural net: y = f(xsim, θ) ;   y’ = f(xsim, θ’)

● classification loss, e.g., ℒ = - log(y) - log(1-y’)

● f* = argmin ∫ Dθ Dθ’ Dxsim ℒ

● → P(x | θ) / P(x) = f*(x, θ) / [ 1 - f*(x, θ) ]



Neural ratio estimation (NRE)

P(parameters | data) = 
P(data | parameters)   P(parameters)

P(data)

● draw θ, θ’ ~ P(parameters)

● simulate xsim ~ P(data | θ) [drawing η, ζ]

● evaluate neural net: y = f(xsim, θ) ;   y’ = f(xsim, θ’)

● classification loss, e.g., ℒ = - log(y) - log(1-y’)

● f* = argmin ∫ Dθ Dθ’ Dxsim ℒ

● → P(x | θ) / P(x) = f*(x, θ) / [ 1 - f*(x, θ) ]

● any simulatable effect can be incorporated
● rephrase as classification problem → sophisticated machinery exists
● no formal difference between nuisance parameters and initial conditions



A 3-D map of the universe

each dot a galaxy 
with redshift
(~radial distance)

SDSS/BOSS survey

[H
S

T]



How to summarize this map?

1) pairs of galaxies
(power spectrum)
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How to summarize this map?

1) pairs of galaxies
(power spectrum)

2) triangles of galaxies
(bispectrum)

3) …

4) “empty regions”
(cosmic voids)
– size distribution
– void-galaxy pairs
– …

[H
am

aus+2020]



What can voids do for us?

● not virialized → ideal for 
redshift-space distortions, 
Alcock-Paczynski
○ matter density Ωm
○ growth of structure f/b

[Lavaux&Wandelt2011]
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What can voids do for us?

● not virialized → ideal for 
redshift-space distortions, 
Alcock-Paczynski
○ matter density Ωm
○ growth of structure f/b

● isolated galaxies → galaxy 
evolution in simple environment

[Kreckel+2011]
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solar neutrino 
problem

[Fukuda+1998]

atmospheric neutrinos [Aker+2022]

β-decay

● origin of mass 
(seesaw?)

● neutrino nature?
● dark energy?
● surprises?



What can voids do for us?

● not virialized → ideal for 
redshift-space distortions, 
Alcock-Paczynski
○ matter density Ωm
○ growth of structure f/b

● isolated galaxies → galaxy 
evolution in simple environment

● complementary to correlation 
functions since voids upweight 
underdense regions
○ corrections to general relativity
○ dark energy
○ neutrino mass

[FLAMINGO]

neutrinos

cold dark matter
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small scaleslarge scales

effect of neutrino mass

[Gerbino&Lattanzi]



Problem formulation

● obtain constraints on neutrino mass 
sum, Σm𝜈

● using 3-D galaxy map from BOSS 
survey

● summary statistics:
○ galaxy auto-power spectrum
○ void size function
○ void-galaxy cross power 

spectrum



Problem formulation

● obtain constraints on neutrino mass 
sum, Σm𝜈

● using 3-D galaxy map from BOSS 
survey

● summary statistics:
○ galaxy auto-power spectrum
○ void size function
○ void-galaxy cross power 

spectrum

● model based on simulations
● perform implicit-likelihood inference



Simulations

Recall: sum over simulation samples 
needs to approximate

∫ Dθ Dθ’ Dxsim

→ simulate according to prior
P(θ) P(η) P(ζ)



Simulations

Recall: sum over simulation samples 
needs to approximate

∫ Dθ Dθ’ Dxsim

→ simulate according to prior
P(θ) P(η) P(ζ)

Place galaxies into gravity-only 
simulations using halo-occupation 
distribution model.

Implement survey realism.



Spot our universe! 1x 8x
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Simulations agree with data



z’

z

θ xsim

R1 Rn

yThe neural net



The neural net

z’

z

θ xsim

R1 Rn

y



Testing trained neural network’s quality

Randomly picking a posterior sample 
should be statistically indistinguishable from 
the true parameter value.



Testing trained neural network’s quality

Randomly picking a posterior sample 
should be statistically indistinguishable from 
the true parameter value.



Neutrino mass constraints

kmax = 0.15



Neutrino mass constraints

kmax = 0.15 kmax = 0.20

constraint from below?



The future for voids

Rubin/LSST: large photo-z voids

interplay between density contrast 
and number

DESI: better numbers

PFS Lyman-α: clean 
small voids at higher 
redshifts

Euclid: everything?



Summary 1) Emulating complicated physics can be done 
with deep learning. Precise problem formulation 
and domain knowledge help. 

2) Deep learning has made great progress in the 
past decade. Over-parameterized neural nets 
have become trainable & state-of-the-art.

3) Implicit-likelihood inference enables learning a 
likelihood from simulated samples. Useful both 
if likelihood form unknown and as alternative to 
high-dimensional emulators.
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and domain knowledge help. 

2) Deep learning has made great progress in the 
past decade. Over-parameterized neural nets 
have become trainable & state-of-the-art.

3) Implicit-likelihood inference enables learning a 
likelihood from simulated samples. Useful both 
if likelihood form unknown and as alternative to 
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Thank you for your attention!


