Cosmology Seminar Berkeley 16th of January 2024

Improving BAO constraints with cosmic voids

Amélie Tamone

Collaborators: Chia-Hsun Chuang, Daniel Forero-Sanchez, Francisco Kitaura, Jean-Paul Kneib, Charling Tao, Andrei Variu, Cheng Zhao

Baryon Acoustic Oscillations as a Standard Ruler

Infer dilation parameter aBAO peak position: $(DA^2/H)^{1/3}/rs$ AP effect (relative dilation $\frac{a}{a}$): HDA

Distance Measurements from Spectroscopic Surveys

Cosmic Web

4

Cosmic Void Definitions

DIVE : Delaunay Triangulation Void Finder

DIVE algorithm and DT Voids

Void centers

Distribution of Voids

Two void populations:

- Void-in-clouds: small voids
 - Follow halo distribution
 - Void-in-voids: large voids
 - Follow underdensities

Radius Dependency

Void Correlations

Optimal Radius Selection

-> Radius chosen to optimize BAO SNR

First BAO Detection with Voids

BOSS CMASS DR11

Sensitivity to Number Density

Sensitivity to Incompleteness

SDSS data: LRG and ELG samples

SDSS data: LRG and ELG Void samples

Void catalog obtained from post-reconstruction catalogs

 Signal LRG (a): BOSS DR12 0.2<z<0.5</th>
 LRG (c): CMASS+eBOSS 0.6<z<1.0</th>

 LRG (b): BOSS DR12 0.4<z<0.6</td>
 ELG : eBOSS 0.6<z<1.1</td>

LRGs/ELGs: Optimal Radius

Sample		Redshift range	Zeff	Galactic cap	N _{gal}
LRG (a) (BOSS DR12)		(0.2, 0.5)	0.38	NGC SGC Total	429182 174819 604001
LRG (b) (BOSS DR12)		(0.4, 0.6)	0.51	NGC SGC Total	500872 185498 686370
LRG (c) (CMASS+eBOSS DR16)		(0.6, 1.0)	0.70	NGC SGC Total	255741 121717 377458
ELG (eBOSS DR16)		(0.6, 1.1)	0.85	NGC SGC Total	83769 89967 173736
Sample	$(R_{\rm v,min},R_{\rm v,min})$	_{nax}) Gal	actic	Nraw	N
LRG (a)	$(h^{-1} \text{ Mpc})$ (16, 40)	c N S T	ap GC GC Mal	2639522 1047500 3687022	902637 317737 1220374
LRG (b)	(16, 40)	N S T	GC GC otal	3107491 1130310 4237801	995763 359202 1354965
LRG (c)	(21.5, 40)	N SO To	GC GC Stal	1485650 697680 2183330	551265 243530 794795
ELG	(16, 40)	N Se Te	GC GC otal	370356 362127 732483	172208 149988 322196

x2

remove

~60-70% voids

Multi-tracer BAO analysis: Approach A

Multi-tracer BAO analysis: Approach B

Typical dewiggled BAO power spectrum template:

$$P_{\rm t,DW}(k) = [P_{\rm lin}(k) - P_{\rm lin,nw}(k)]e^{-k^2 \Sigma_{\rm nl}^2/2} + P_{\rm lin,nw}(k)$$

Correlation:

$$\xi_{\text{temp}}(s) = \frac{1}{2\pi^2} \int P_{\text{t,DW}}(k) j_0(ks) e^{-k^2 a^2} k^2 dk$$

$$\xi_{\rm m}(s) = B\xi_{\rm temp}(\alpha s) + A_0 + A_1/s + A_2/s^2$$

Typical dewiggled BAO power spectrum template:

BAO Analysis Pipeline

LRGs/ELGs: Results - Best-fitting alpha

24

LRGs/ELGs: Results - Uncertainty

LRGs/ELGs: Results - Data

Sample	Data vector	$lpha_{ ext{fit}}$	$\sigma_{lpha,\mathrm{syst}}$
LRG (a)	$\{\boldsymbol{\xi}_{gg}\}$ $\{\boldsymbol{\xi}_{comb}\}$	$\begin{array}{c} 0.9992\substack{+0.0100\\-0.0097}\\ 0.9952\substack{+0.0083\\-0.0086}\end{array}$	0.0009 0.0005
LRG (b)	$\{\boldsymbol{\xi}_{gg}\}$ $\{\boldsymbol{\xi}_{comb}\}$	$\begin{array}{c} 0.9928\substack{+0.0088\\-0.0089}\\ 0.9927\substack{+0.0076\\-0.0076}\end{array}$	0.0021 0.0013
LRG (c)	$\{\boldsymbol{\xi}_{gg}\}$ $\{\boldsymbol{\xi}_{comb}\}$	$\begin{array}{c} 0.9982\substack{+0.0116\\-0.0119}\\ 0.9934\substack{+0.0110\\-0.0109}\end{array}$	0.0013 0.0027
ELG	$\{\boldsymbol{\xi}_{gg}\}$ $\{\boldsymbol{\xi}_{comb}\}$	$\begin{array}{c} 0.9825\substack{+0.0321\\-0.0318}\\ 0.9867\substack{+0.0310\\-0.0236}\end{array}$	0.0057 0.0069
LRG (c) × ELG	$\{\boldsymbol{\xi}_{gg}^{\times}\}\$ $\{\boldsymbol{\xi}_{comb}^{\times}\}\$	$\begin{array}{c} 0.9565\substack{+0.0254\\-0.0246}\\ 0.9539\substack{+0.0228\\-0.0212}\end{array}$	0.0022 0.0010

Improvement ranging from 5 to 15%

SDSS data: eBOSS QSO sample

Low number density: an order of magnitude lower than for other SDSS tracers 27

QSOs: Correlations of mocks

Strong exclusion effect

- Difficult to understand the BAO signal
- Difficult to determine the best radius cut with SNR

QSOs: Void Optimal Radius

Creation mocks with and without BAO wiggles Selection of optimal radius cut to enhance BAO SNR using the difference between the two kind of mocks

QSOs: Data Correlations

For the BAO analysis the XCF is used jointly with the QSOs 2PCF

Rmin is 36 Mpc/h

QSOs: Results - EZmocks

Joint fit 2PCF and XCF with template model compared to 2PCF alone:

- 5.41% average error improvement
- Improvement for 71.6% of the EZmocks

QSOs: Results - Data

$$\begin{array}{c|c} \alpha_{\rm fit} & D_V(z=1.48)/r_s\\ \hline \xi_{\rm,gg} & 1.0172^{+0.0207}_{-0.0201} & 26.298\pm0.547\\ \xi_{\rm,gg+gv} & 1.0171^{+0.0212}_{-0.0196} & 26.297\pm0.547 \end{array}$$

- No improvement due to cosmic variance

Subsampling the dataset recovers mocks statistics

Cosmology Constraints from SDSS Voids

Cosmology Constraints from SDSS Voids

Future work

• DESI data

 Anisotropic distance measurements (2D alphas)

 Model improvement with theoretically modelling sphere exclusion

Summary

- BAO measurements from cosmic voids defined geometrically as empty spheres with a radius threshold as one more free parameter for under-densities selection
- Cosmic voids are robust to unknown sources of small incompleteness
- For most cases two multi-tracer approaches yield similar results
- Statistically voids contribute to ~10% improvement on BAO constraints for LRG and ELG post-reconstruction
- Statistically voids contribute to ~5% improvement on BAO constraints on 70% of the cases for QSO (pre-reconstruction)
- Combining voids and SDSS galaxies leads to a 17% improvement on OLh2, and 6% for Om and H0 from a joint BBN+BAO constraint in flat-LCDM compared to SDSS galaxies+QSOs only

Multi-tracer BAO analysis: Covariances

Cosmology Constraints from SDSS Voids

Model	Probe	$H_0 ({\rm kms^{-1}Mpc^{-1}})$	$\Omega_{ m m}$	$\Omega_\Lambda h^2$
ЛСDM	BBN + BAO	67.35 ± 0.98	0.299 ± 0.016	0.3179 ± 0.0094
	BBN + mtBAO	67.58 ± 0.91	0.290 ± 0.015	0.3241 ± 0.0079
	CMB	67.29 ± 0.61	0.3164 ± 0.0084	0.3096 ± 0.0094
	CMB + BAO	67.60 ± 0.43	0.3119 ± 0.0058	0.3145 ± 0.0066
	CMB + mtBAO	67.96 ± 0.39	0.3070 ± 0.0051	0.3201 ± 0.0060
	Distance ladder	74.0 ± 1.4	-	-
	Distance Ladder + BAO	74.0 ± 1.4	0.299 ± 0.016	0.384 ± 0.017
	Distance Ladder + mtBAO	74.0 ± 1.4	0.290 ± 0.015	0.390 ± 0.017