Towards an accurate optical cluster cosmology with SDSS redMaPPer clusters and HSC Y3 lensing measurements

Tomomi Sunayama (U. Arizona / Nagoya University) And HSC Weak Lensing WG

Era of Precision Cosmology

* Current and future galaxy surveys will observe larger area and many more galaxies at higher redshift...

Standard Cosmological Model

Our Universe can be explained by six parameters (ΛCDM model)

- Matter density Ω_m
- Baryon density Ω_b
- Hubble parameter *h*
- Cosmological constant Λ
- Initial amplitude σ₈ and slope *n* of power spectrum of fluctuations

Standard Cosmological Model

- What is the fate of the Universe? — the nature of dark energy
- What is the Universe made of? — the nature of dark matter
- How did the Universe begin? — the nature of primordial fluctuations

Early 2000s: Concordance Cosmology

 Different CMB/LSS probes constrain cosmological parameters in a consistent manner

Does the model describe our Universe consistently?

Tensions in Cosmology

* Tensions in Hubble constant as well as S_8 ("clumpiness").

Tension in Optical Cluster Cosmology

* DES Y1 Cluster analysis favored lower S_8 than even late-Universe probes

DR18 Planck CMB **DR15** HSC-Y1 DES-Y1 3x2 KiDS-450+VIKING Lensing KiDS-450+2dFLenS KiDS-450+GAMA Planck SZ SPT-2500 Clusters ACT SZ-WtG-SDSS 0.6 0.81.0

 $S_8 = \sigma_8 (\Omega_m / 0.3)^{1/2}$

Clumpiness of the density fluctuation

DES Y1 Cluster, 2020

Are optical clusters a good cosmological probe?

- Adding extra data sets to optical clusters give more consistent cosmological result with other probes
- * Can we do cluster cosmology only using optical clusters?

Outline

- * (Optical) Clusters as a cosmological probe
- * How can we mitigate the issue in optical cluster cosmology?
 - * Full-forward modeling of cluster observables
- Cluster Cosmology with SDSS redMaPPer clusters and HSC-Y3 data

Clusters as a cosmological probe

- * Count the number of clusters
- Tail of halo mass function (i.e., number of clusters) is sensitive to cosmological parameters

With Dark Energy

Without Dark Energy

Virgo consortium

Clusters as a cosmological probe

- * Count the number of clusters
- Tail of halo mass function (i.e., number of clusters) is sensitive to cosmological parameters

Vikhilinin et al., 2009

Clusters as a cosmological probe

- * Background cosmology (i.e., Ω_m) impacts both the number density & evolution
- * Clusters form from the highest density peaks in the initial density field
- * σ_8 (="clumpiness"): higher $\sigma_8 \rightarrow$ more high-density peaks \rightarrow more clusters

Clusters can be statistically competitive with other probes...

* Cosmic Visions Report (2016): "The number of massive galaxy clusters could emerge as the most powerful cosmological probe

Snowmass2013; Huterer et al.

Challenge in Cluster Cosmology

- * Cosmic Visions Report (2016): "The number of massive galaxy clusters could emerge as the most powerful cosmological probe if the masses of the clusters can be accurately measured."
- * Cluster mass is not a direct observable

Challenge in Cluster Cosmology

- X-ray brightness (L_r)
- High purity and completeness
- Scatter in mass- L_r
- Mass limit increases with redshift

CMB: Sunyaev-Zel'dovich (SZ) Effect

Small

Systematics

- SZ decrement (Y_{SZ})
- Redshift independent mass selection threshold
- Limited to massive clusters

Optical

- Number of galaxies (=richness λ)
- High completeness, to relatively low masses
- Susceptible to correlated structure
- Mass measurement from lensing comes Large free

Gravitational Lensing

 Gravitational potential due to clusters (="lens") bend the light from distant galaxies (=source galaxies) and distort the image of galaxy shapes.

Weak Gravitational Lensing

* Through gravitational lensing, we can infer mass of clusters.

Weak Gravitational Lensing

 Weak gravitational lensing only alters the galaxy shapes slightly; need to stack many clusters to infer mass

Why optical?

- * Optical allows to detect lower mass clusters
- * More number of clusters = better weak lensing mass measurement
- * Better constraining power on cosmological parameters

Recipe for Optical Cluster Cosmology

Optical cluster cosmology is in tension

Optical cluster cosmology is in tension

Common systematics for Optical Cluster Cosmology

* Membership dilutions

- Cluster members can be misidentified as source galaxies; dilutes the lensing signal around clusters
- Can be corrected by the "boost factors"
- * Mis-centering
 - The assigned center of a cluster can be off-set from the true center
 - Dilutes the lensing signal; subdominant and can be modeled
- * Halo triaxiality
 - A shape of halos is not spherical but rather triaxial
 - Theoretical systematics can arise by assuming spherical halos in mass measurements; proved to be subdominant from simulations

Common systematics for Optical Cluster Cosmology

Projection Effects

• Misidentification of member galaxies along the line-of-sight

The projection effects alter the mass-richness relation!

Testing Projection Effects: Setups

- Construct galaxy mock catalogs for red-sequence
 galaxies using N-body simulation and its halo catalog
- 2. Run the cluster finder on the mock
 - Find over-density regions of red galaxies
 - Determine cluster center and member galaxies in a cylinder
- 3. Repeat the process iteratively

Testing Projection Effects: Setups

- Construct galaxy mock catalogs for red-sequence galaxies using N-body simulation and its halo catalog
- 2. Run the cluster finder on the mock
 - Find over-density regions of red galaxies
 - Determine cluster center and member galaxies in a cylinder
- 3. Repeat the process iteratively

Testing Projection Effects: Setups

- Construct galaxy mock catalogs for red-sequence galaxies using N-body simulation and its halo catalog
- 2. Run the cluster finder on the mock
 - Find over-density regions of red galaxies
 - Determine cluster center and member galaxies in a cylinder; assign membership probability
- 3. Repeat the process iteratively

"True" cluster samples richness=# of galaxies in the halo

"Observed" cluster samples: richness=sum of membership probabilities

Abundance and Mass-Richness Relation

- Due to projection effects, there are more number of lower-mass halos in "observed" cluster samples
- The aperture size is smaller than the actual halo size for massive halos

Projection effects can bias cosmology constraints

Parameters for mass-richness relation

Recipe for Optical Cluster Cosmology

Recipe for Optical Cluster Cosmology

Projection effects beyond Mass-Richness Relation

• The boost on two-halo term cannot be explained by mass difference!

What is the cause of this boost on large scales?

Dark Emulator: accurate prediction of observables

- Building accurate theoretical templates
 - Halo mass function
 - Galaxy-galaxy lensing
 - Galaxy-3D spatial clustering
- "Data driven" sciences with a large suite of simulations
- ~300 simulations for 100 parameter sets (~200TB)

Takahiro Nishimichi (U. Kyoto)

Compare the "observed" signals against emulator predictions, *assuming the true underlying cluster mass information!*

Comparison with the emulator

- Dark Emulator (Nishimichi+2018) takes halo masses as input and gives lensing signals as output
- "Obs." Sample shows the boost on two-halo term; anisotropic structure causes the boost on 2-halo term!

Comparison with the emulator

- Dark Emulator (Nishimichi+2018) takes halo masses as input and gives lensing signals as output
- "Obs." Sample shows the boost on two-halo term; anisotropic structure causes the boost on 2-halo term!

Distribution of clusters is anisotropic

 Cluster finder preferentially identify clusters on aligned filaments along LOS as clusters

Can we confirm projection effects observationally?

- Increase on amplitude happens only when the integral scale is smaller than the projection length
- * Assume that galaxies are more isotropically selected than clusters

$$w_{\mathrm{p},ij}(R) = 2 \int_0^{\pi_{\mathrm{max}}} \mathrm{d}\pi \ \xi_{\mathrm{cc},ij} \left(\sqrt{R^2 + \pi^2}\right)$$

Can we confirm projection effects observationally?

- Using SDSS redMaPPer cluster at 0.1<z<0.33 and measure projected correlation functions with various integral scales
- Observational evidence of clusters being more anisotropic ally distributed than galaxies

Sunayama 2023

Modeling projection effects for cosmology

Model the excess mass as a multiplicative factor

$$\Pi(R) = \begin{cases} \Pi_0(R/R_0) & \text{for } R \le R_0, \\ \Pi_0 + c \ln(R/R_0) & \text{for } R > R_0. \end{cases}$$

And treat it as effective biases $\Sigma(R) = \Pi(R)\Sigma^{iso}(R),$ $w_p(R) = \Pi^2(R)w_p^{iso}(R).$

Park,TS+2022

Recipe for Optical Cluster Cosmology

Mock Challenge: Validate the model

Do we need to worry about baryonic effects?

* The baryonic effects constrained from kSZ (Giri&Schneider 2021) and cosmic shear (Arico+2023) suppress power spectra more strongly than the predictions from Illustris-TNG and EAGLE.

Sunayama+2023

Baryonic effects do not bias cosmology

- We model baryonic effects on lensing signals using baryonification
- Cluster cosmology

 analysis is not biased
 without modeling
 baryonic effects on
 lensing signals

Including projection effects is crucial

* Ignoring the projection effects can bias the constraints on cosmological parameters

SDSS redMaPPer clusters x HSC WL Measurement

Subaru Hyper Suprime-Cam (HSC)

- * 8.2 m primary mirror
 - ~11 x light collecting power of SDSS
 - * Can observe high-z source galaxies
- * Superb image quality: PSF~0.6"
 - * SDSS~1.0"
 - * Better shape measurements
- * Large Field-of-View: 1.5° diameter
 - * ~7 x full moon
 - * Efficiently observe large area of sky

Photo credit: NAOJ, Miyazaki et al. (2018), Komiyama et al. (2018)

Image quality of HSC

* Superb image quality: PSF~0.6" → better shape measurement

Huang+2017

Subaru Field of View

- Wide Layer (1200 deg², grizy, i_{lim}~26) is designed for weak lensing cosmology (10⁸ galaxies).
- * Survey started in 2014 and completed at the end of 2021.
- Third-year data ~433deg².

Analysis-level blind analysis

- We need to avoid confirmation bias: we might unconsciously correct systematics to match Planck cosmology.
- Analysis-level blinding: When plotting a contour, we blind the central value and measured signals.

Nikko Toshogu Shrine, Japan

Internal Consistency Tests

setup label	description	$\mathcal{D}(\theta), \mathcal{D}(\mathbf{d})$
fiducial	baseline analysis $N_c + w_{p,1-4} + \Delta \Sigma_{1-4}$	21, 68
demp	demp is used to infer the source redshift distribution and for $\Delta\Sigma_{1-4}$ measurement.	21, 68
mizuki	mizuki is used for source sample selection and $\Delta \Sigma_{1-4}$ measurement	21,68
dNNz	dNNzis used for source sample selection and $\Delta\Sigma_{1-4}$ measurement (same as fiducial)	21, 68
Rmin=0.2	Using the minimum scale cut of $0.2h^{-1}$ Mpc for $\Delta\Sigma_{1-4}$	21, 76
Rmin=1.0	Using the minimum scale cut of $1.0h^{-1}$ Mpc for $\Delta\Sigma_{1-4}$	21, 64
nonc	$\mathbf{w}_{p,1-4} + \Delta \Sigma_{1-4}$ without \mathbf{N}_c	21, 64
nods	$N_c + W_{p,1-4}$ without $\Delta \Sigma_{1-4}$	21, 28
nowp	$N_c + \Delta \Sigma_{1-4}$ without $w_{p,1-4}$	21, 44
no20to30	$N_{c,1-3} + w_{p,1-3} + \Delta \Sigma_{1-3}$ for $\lambda \in [30, 40)$, [40, 55), and [55, 200) but not $\lambda \in [20, 30)$	21, 51
no30to40	the same as above, without the observables for $\lambda \in [30, 40)$	21, 51
no40to55	the same as above, without the observables for $\lambda \in [40, 55)$	21,51
no55to200	the same as above, without the observables for $\lambda \in [55, 200)$	21,51
XMM (~ 33 deg ²)*	similar to "fiducial", but using the lensing signals of the XMM field alone	21, 68
GAMA15H (~ 41 deg ²)*	similar to "fiducial", but using the lensing signals of the GAMA15H field alone	21,68
HECTOMAP (~ 43 deg ²)*	similar to "fiducial", but using the lensing signals of the HECTOMAP field alone	21,68
GAMA09H (~ 78 deg ²)*	similar to "fiducial", but using the lensing signals of the GAMA09H field alone	21,68
VVDS (~ 96 deg ²)*	similar to "fiducial", but using the lensing signals of the VVDS field alone	21,68
WIDE12H (~ 121 deg^2)*	similar to "fiducial", but using the lensing signals of the WIDE12H field alone	21,68
dpzs	randomly sampling Δz_{ph} from the chain provided by Li et al. (2023)	22, 69
dm	using a uniform prior of $\Delta m = \mathcal{U}(-0.05, 0.05)$	22, 69

Internal Consistency Tests

Measuring cluster observables

 We measure cluster abundance and clustering from SDSS redMaPPer clusters and lensing signals using HSC-Y3 source catalog.

Result: SDSS clusters+HSC lensing

$$\Omega_{\rm m} = 0.258^{+0.083}_{-0.057}$$
$$\sigma_8 = 0.838^{+0.083}_{-0.074}$$
$$S_8 = 0.816^{+0.041}_{0.039}$$

Sunayama+2023:2309.13025

Comparing with the best-fit parameters

* The measured cluster observables and the best-fit predictions agree well (χ^2 /dof = 34.8/47).

Comparing to other HSC-Y3/Cluster analyses

* Our results are consistent with other HSC-Y3 and cluster cosmology analyses at the level of 1-sigma on S_8

Summary

- This is the first study after DES Y1 cluster analysis to constrain cosmological parameters consistent with other CMB/LSS probes by using only optical cluster observables.
- Optical clusters are susceptible to projection effects, which alter not only the mass-richness relation but also lensing/clustering signals on large scales
- Due to preferential selection of aligned filaments along LOS, the distribution of optical clusters is anisotropic and therefore boosts the amplitude of clustering/lensing on large scales
- * Accurate modeling of projection effects is crucial

What's next?

- * HSC completed the survey last year, and now people are working on final year catalog (~1200deg²)
- * HSC is much deeper than SDSS: we can track the evolution of galaxy clusters up to $z \sim 1.2 \rightarrow$ better constraint on $\Omega_{\rm m}$

A multi-wavelength approach

- * Combining data from different surveys can provide a more comprehensive picture of clusters
- * Different data can improve self-calibration of systematics

Costanzi+2020

Optical Cluster Cosmology with DESI

 Spectroscopic data for cluster central galaxies enables us to measure 3D clustering

→ BAO can constrain Ω_m better, RSD can provide kinematic information around clusters and anisotropic structure due to projection effects can be self-calibrated better

- → possibly IA can further improve the precision
- * Finding different ways to identify clusters...

→ Using other galaxy properties (such as stellar mass) which are highly correlated with halo mass to identify clusters (e.g., Xhajik+2023)

Thank you!