Pinning Down Local Primordial Non-Gaussianity with Galaxy Bias

BCCP Seminar

Jamie Sullivan (based on work w/ Uroš, Stephen Chen, Tijan Prijon)

Science

What is happening here?

What is happening here?

Counting Inflationary Fields

Initial gravitational potential largely Gaussian

But primordial physics can add non-Gaussianity (PNG)

E.g. multi-field inflation produces *local* PNG:

f_{NL} a Prime Target of Future Galaxy Surveys

Not just Spec-S5 (MegaMapper):

- DESI, DESI-II(?), Euclid, SPHEREx, PFS...
- Also SO x Rubin-LSST, CMB-S4

Planck15, Dalal+08, Slosar+08, image from A. Barreira

Why extra bias? - Cartoon LPNG bias

Why extra bias? - Cartoon LPNG bias

LPNG "boosts local variance"

Halos form after crossing threshold

Why extra bias? - Cartoon LPNG bias

LPNG "boosts local variance"

Halos form after crossing threshold

Crossing affected by LPNG

Assume this form:

$$b_{\phi}(b,p) \propto b-p$$

Galaxy survey $\mathbf{f}_{\rm NL}$ - SDSS quasars

Slosar++08

Galaxy survey f_{NL} - SDSS quasars

Slosar++08

Ross++12

Galaxy survey f_{NL} - SDSS quasars

Ross++12

Leistedt++14

Galaxy survey f_{NL} - eBOSS quasars

Galaxy survey f_{NL} - eBOSS quasars

Slosar++08

Ross++12

Leistedt++14

Castorina++19

Mueller++21

Galaxy survey f_{NL} - BOSS LRGs

Slosar++08

Ross++12

Leistedt++14

Castorina++19

Mueller++21

D'Amico++22

Galaxy survey f_{NL} - BOSS LRGs

BOSS DR12 (B) optimal BOSS DR12 (A) Slosar++08weights Simulation N/o optimal weights Ross++12Leistedt++14 BOSS $P_{l} + Q_{0} + BAO$ BOSS $P_{\ell} + Q_0 + BAO + B_0$ 300 Castorina++19 50 fortho $f_{\rm NL}^{\rm loc}$, p = 1.0-300 Mueller++21 -600D'Amico++222000 -5000 0 f_{NI}^{equil} f_{NL} Cabass++22a-50-300 -200 -100100 200 300 0 f^{local} 2.45 2.50 2.55 2.60 2.03 2./0 -500000 0 500000 1000000 $g_{
m NL}$

 $b_{\rm qso}$ (NGC)

Galaxy survey f_{NL} - BOSS LRGs

The " \star "'s return : Understanding b_{ϕ}

How worried should we be about standard assumption?

Can we break the degeneracy between b_{ϕ} and f_{NL} ?

Attacking b_{ϕ} from **3 angles**:

- 1. Test b_{ϕ} in simulations at field level -> surprises?
- 2. Can we use deviations from standard assumption?
- 3. A new way to estimate b_{ϕ} without f_{NL} ?

The " \star "'s return : Understanding b_{ϕ}

How worried should we be about standard assumption?

Can we break the degeneracy between b_{ϕ} and f_{NL} ?

Attacking b_{ϕ} from **3 angles**:

1. Test b_{ϕ} in simulations at field level -> surprises?

- 2. Can we use deviations from standard assumption?
- 3. A new way to estimate b_{ϕ} without f_{NL} ?

How to measure b_{ϕ} ?

Annoying to do in power spectrum (2-loop, changing b1)

- -> Separate Universe (related to Peak-background split)
- Finite-difference 2 sims
- Uses infinite-wavelength limit

Now standard

Idea: test of PNG bias at the field level (quadratic Lag model)

No sample variance - <u>no compression</u>

Field-level likelihood - vector of pixels - simple regression

Matter

Halos

Potential

Idea: test of PNG bias at the field level (quadratic Lag model)

No sample variance - <u>no compression</u>

Field-level likelihood - vector of pixels - simple regression

$$\begin{split} \tilde{\delta}_{t,\text{fwd}}(\mathbf{x},\delta) &= -\delta(\mathbf{x}) + b_{\delta} D(z) \ \delta^{\text{adv}}(\mathbf{q}) \\ &+ b_{\delta^2} \ D^2(z) \ \delta^{2,\text{adv}}(\mathbf{q}) + b_{K^2} \ D^2(z) \ K_{ij}^{2,\text{adv}}(\mathbf{q}) \\ &+ c_{\nabla^2 \delta} \ D(z) \ \left(\nabla^2 \delta\right)^{\text{adv}}(\mathbf{q}) \\ &+ \epsilon_t(\mathbf{x}), \end{split} \\ \delta_{t,\text{fwd}}(\mathbf{x}, \delta) &= \tilde{\delta}_{t,\text{fwd}}(\mathbf{x}, \delta) + b_{t,\text{fwd}}^{\text{loc}} \phi^{\text{adv}}(\mathbf{q}) \\ \end{split}$$

$$\begin{split} \delta_{t,\text{fwd}}(\mathbf{x}) &= \tilde{\delta}_{t,\text{fwd}}(\mathbf{x},\delta) + b_{\phi} f_{NL}^{\text{loc}} \phi^{\text{adv}}(\mathbf{q}) \\ &+ b_{\phi\delta} f_{NL}^{\text{loc}} \left[\phi\delta\right]^{\text{adv}}(\mathbf{q}) \end{split}$$

Generally agree with UMF and SU on large scales

Somewhat resolution dependent...

 $f_{NI}^{\text{loc}} = 0.0, log M = \text{fine-bin7}$

How are we doing with the cutoff Λ ?

Looks good for Gaussian up to red scale

1. Field-lev

How are we doing with the cutoff Λ ?

Looks good for Gaussian up to red scale

Adding PNG, much the same*

(*w/ renormalized operators)

What's next?

- Quantify f_{NL} information
- Cubic operators?
- Other types of PNG? (no SU)

No (real) surprises yet, reassuring!

The " \star "'s return : Understanding b_{ϕ}

How worried should we be about standard assumption?

Can we break the degeneracy between b_{ϕ} and f_{NL} ?

Attacking b_{ϕ} from **3 angles**:

1. Test b_{ϕ} in simulations at field level -> surprises?

2. Can we use deviations from standard assumption?

3. A new way to estimate b_{ϕ} without f_{NL} ?

Slosar+08, Reid+10 (adapted), Barreira+Krause23, Lucie-Smith+23

2. LPNG & Assembly Bias

Halo assembly bias:

Slosar 08 -> "merger"

Reid 10 -> formation time

Lazeyras 22 -> concentration (also spin, axis ratio)

2. LPNG & Assembly Bias

- Halo concentration *c* has a large effect
- Especially at low mass, enormous variation
- Seems like a problem...
- Or is it?

2. LPNG & Assembly Bias

Halo concentration c has a large effect Especially at low mass, Concentration enormous variation $\log M = 11.79$ 20 (c, M)Seems like a problem... 10^{-10} Or is it? $\log M = 13.84$ $\log M = 14.38$ Idea -> Multi-tracer 2.55.07.5

Multi-tracer method

Two tracers share sample variance

Ratio effectively cancels it

Multi-tracer method

Seljak09, McDonald+Seljak09, Schmittfull+Seljak18 (image from Schmittfull 2020)

Sub-sample Multi-tracer

Idea: Identify multi-tracer samples with sub-samples split by concentration (use ML)

*Big assumption about GHC! (Ignore the

Error on f_{NL} scales like:

$$\sigma(f_{
m NL}^{
m (loc)}) \propto \left(rac{b_{\phi,1}}{b_1} - rac{b_{\phi,2}}{b_2}
ight)^{-1}$$

Fisher forecast setup

Fisher forecast - multiple simulated DESI-like galaxy samples

Emission Line Galaxies (ELGs) & Luminous Red Galaxies

Require split b_{ϕ} as input

(LRGs)

space

IllustrisTNG Work in redshift

Feature Importance

Pearson Correlation

z-band - 1.00

g-band - 0.97]

r-band - 0.99 0

 $\sum M_i^*/d_i = -0.04$

N_{1Mpc/h} --0.03

N_{5Mpc/h} --0.10

6			LF	RG-lil	ke ga	alaxie	es				1.00			N 335	El	_G-lil	ke ga	laxie	es			-	1.00
z-band -	1.00	0.97	0.99	-0.93	-0.72	-0.04	-0.09	-0.03	-0.10		0.75	z-band -	1.00	0.99	1.00	-0.93	-0.76	-0.03	-0.05	-0.03	-0.06		0.75
-band	0.97	1.00	0.99	-0.82	-0.63	-0.03	-0.08	-0.03	-0.09		0.75	g-band -	0.99	1.00	1.00	-0.87	-0.72	-0.04	-0.05	-0.03	-0.06		0.75
r-band -	0.99	0.99	1.00	-0.89	-0.68	-0.03	-0.08	-0.03	-0.10	-	0.50	r-band -	1.00	1.00	1.00	-0.91	-0.74	-0.03	-0.05	-0.03	-0.06	-	0.50
M* -	-0.93	-0.82	-0.89	1.00	0.78	0.05	0.10	0.02	0.12	-	0.25	M* -	-0.93	-0.87	-0.91	1.00	0.80	0.02	0.05	0.03	0.05	-	0.25
∑ <i>M</i> ;* -	-0.72	-0.63	-0.68	0.78	1.00	0.44	0.34	0.09	0.40	-	0.00	∑ <i>M</i> ; [*] -	-0.76	-0.72	-0.74	0.80	1.00	0.27	0.30	0.13	0.32	-	0.00
M;*/d; -	-0.04	-0.03	-0.03	0.05	0.44	1.00	0.46	0.58	0.52		-0.25	$\sum M_i^*/d_i$ -	-0.03	-0.04	-0.03	0.02	0.27	1.00	0.33	0.60	0.35	_	-0.25
A -	-0.09	-0.08	-0.08	0.10	0.34	0.46	1.00	0.19	0.88		0.20	A -	-0.05	-0.05	-0.05	0.05	0.30	0.33	1.00	0.24	0.89		
№ _{1<i>Mpc/h</i> -}	-0.03	-0.03	-0.03	0.02	0.09	0.58	0.19	1.00	0.21	-	-0.50	N _{1Mpc/h} -	-0.03	-0.03	-0.03	0.03	0.13	0.60	0.24	1.00	0.28	-	-0.50
N _{5Mpc/h} −	-0.10	-0.09	-0.10	0.12	0.40	0.52	0.88	0.21	1.00	-	-0.75	N _{5Mpc/h} -	-0.06	-0.06	-0.06	0.05	0.32	0.35	0.89	0.28	1.00	-	-0.75
	z-band -	g-band -	r-band -	' * Σ	Σm _i * -	Σm _i */di -	- A -	N1Mpc/h -	N5Mpc/h -				z-band -	g-band -	r-band -	' * Σ	ΣM [*] -	ΣM _i * /di -	- A -	N1Mpc/h -	N5Mpc/h -		

Mock DESI Galaxies - Toward $\sigma(f_{NL}) \sim 1 \text{ today}!$

	$\mathrm{ELG} + \mathrm{LRG}$	$\sigma(f_{NL}^{ m loc})$
Use multiple galaxy	p = 1	4.0
subsamples	(2) ($\overline{\text{LRG}}, \overline{\text{ELG}}$), ideal	2.3
Subcomplee heve	(2) ($\overline{\text{LRG}}, \overline{\text{ELG}}$), pred	2.3
Subsamples have	(2) (LRG+, ELG+), ideal	1.4
different b_{ϕ}	(2) (LRG+, ELG+), pred	2.4
Large improvement	(3) (LRG-, LRG+, ELG-), ideal	0.8
	(3) (LRG-, LRG+, ELG-), pred	2.0
over naive	(3) (LRG-, ELG+, ELG-), ideal	0.8
multitracer!	(3) (LRG-, ELG+, ELG-), pred	2.0
	(3) (LRG-, ELG+, else), ideal	0.6
	(3) (LRG-, ELG+, else), pred	1.5

Barreira&Krause23, Marinucci+23

2. LPNG & Assembly Bias

What next?

- Split by color (BK23) we're looking at it!
- Why the strong correlation
 w/ age/concentration?
- LRG / ELG mystery? (Marinucci+23)

The " \star "'s return : Understanding b_{ϕ}

How worried should we be about standard assumption?

Can we break the degeneracy between b_{ϕ} and f_{NL} ?

Attacking b_{ϕ} from **3 angles**:

- 1. Test b_{ϕ} in simulations at field level -> surprises?
- 2. Can we use deviations from standard assumption?

3. A new way to estimate b_{ϕ} without f_{NL} ?

3. Growth is Variance - Idea

LPNG is "like" boosting underlying variance

Can measure LPNG bias by running 2 simulations w/ diff variance

3. Growth is Variance - Idea

- LPNG is "like" boosting underlying variance
- Can measure LPNG bias by running 2 simulations w/ diff variance
- But boosting variance is ~**equivalent** to
- boosting growth of structure!

Separate universe with 1 universe? - PBS

Universality of mass function a decent first approximation

Peak-background split relates bias to peak height response

$$\sigma^{2}(M,z) = \frac{1}{2\pi^{2}} \int k^{2} dk |W(R(M,z)k)|^{2} D^{2}(z) P_{L}(k)$$
$$n(M) = n(M,\nu) = M^{-2} \nu f(\nu) \frac{\mathrm{d}\ln\nu}{\mathrm{d}\ln M} \quad \nu = \delta_{\mathrm{c}}^{2} / \sigma^{2}(M)$$

Growth and change in variance perfectly degenerate via variance

3. Growth is Variance - Simulated Halos

If you don't buy it: N-body halos at z = 1Evaluate bias via finite difference response to: 1. variance (σ_8)

2. growth

$$b_{\phi}^{X = \{\sigma_8, D(z)\}} = 2 \frac{d \log n_g}{d\delta X}$$

3. Growth is Variance - Hydro

Can do the same w/ LPNG assembly bias - here w/ color

Holds roughly across mass

Very preliminary, hydro sims out there are limited

Now looking at BOSS LRGs

3. Growth is Variance

Next:

- Do it with a real selection function
- Compare to GR evolution bias
- Pipe dream: Plug this into multi tracer? -> Ultimate analysis?

Summary

LPNG a target for all upcoming spectroscopic surveys

Simulated picture shows standard assumption lacking

Want to improve theoretical understanding of b_{ϕ}

Multi-tracer & assembly bias may provide a path forward

May be able to measure b_{ϕ} separately from f_{NL} Many interesting directions!