Large-Scale Structure Cosmology with the Quaia Quasar Catalog

Kate Storey-Fisher

Kavli Fellow, Stanford KIPAC

Berkeley Center For Cosmological Physics | Cosmology Seminar

April 22, 2025

these slides at tinyurl.com/ksf-bccp-2025

Mapping the universe in three dimensions

SDSS & eBOSS Surveys ~2 million galaxies (1998-2019)

Anand Raichoor, Ashley Ross, and the SDSS Collaboration

Luminous tracers map the underlying dark matter distribution.

EAGLE Simulation, Crain+2015 (1501.01311) The clustering of galaxies encodes the expansion history and **composition** of the universe.

Well-described by a **ACDM** model (in which the universe is dominated by cold dark matter and dark energy) with only ~6 parameters

Euclid Assessment Study Report

cosmologists: ACDM is a remarkably good model of the universe!

 Ω_m

Quasars for cosmology

Anand Raichoor, EPFL / Ashley Ross, Ohio State University / SDSS Collaboration

extremely luminous accreting black holes

at the center of galaxies

- Highly biased tracer of large-scale structure; seen out to high redshifts, spans large volume
- Quasar clustering constrains cosmology; useful for cross-correlations with other tracers
- Useful for setting reference frame
- Current quasar samples:
 - SDSS: optical & spectroscopic redshifts; limited sky area $(f_{sky}=18\%)$
 - WISE: 2 mid-IR bands, all-sky; limited redshift information
 - [ongoing] DESI: optical spectroscopy; $(f_{sky} = 33\%)$

Gaia: A Milky Way-focused mission with a side of quasars

de Identified 6.6 million quasar candidates based on spectral info, etc

Quasar sample has ~52% purity; many contaminants (mostly stars)

(Low-res) spectroscopic redshifts! ($dz\sim0.02$)

Many catastrophic z-errors from line misidentification

Decontaminating the quasar sample

Giving Gaia a little help from WISE

- WISE observed the full sky in the infrared (~2 billion sources in unWISE reprocessing)
- ~2 million *Gaia* quasar candidates have unWISE data
- 2 mid-IR photometric bands; improves source classification and redshift estimation

NASA/JPL-Caltech/UCLA

Decontaminating the quasar sample

Improving quasar redshift estimates with WISE & SDSS

Improving quasar redshift estimates with WISE & SDSS

Quaia z's using kNN model, trained with z_{SDSS} . in: z_{Gaia} , G, E(B-V), Gaia & WISE colors \rightarrow out: z_{Ouaia}

Quaia: The Gaia-unWISE Quasar Catalog

- \sim **1.3M** quasars with G<20.5 (\sim 750k with G<20.0)
- Precise "spec-photo- $\frac{1}{2}$'s"; median $\frac{1}{2}$ = 1.5, 75k with 2.5 < z < 5

• Data-driven model of **systematics** including dust, stars, & scanning laws; critical for analysis!

KSF, D. W. Hogg, H.-W. Rix, A.-C. Eilers, G. Fabbian, M. R. Blanton,

• **Space-based** data → fewer systematics sources

A 3D Map of the Cosmos

A quick comparison to DESI

Paul Gontard, Stanford

Quaia vs DESI DR1: ~300,000 matched sources

- Quaia (full-sky) has ~2.5x sky area / spanning volume compared to DESI (14,000 deg²)
- DESI has spectroscopic **redshifts**; Quaia spectrophotometric
 - Similar redshift range, effective redshift $z=\sim1.5$
 - DESI confirms Quaia's estimated redshift accuracy
- DESI DR1: 2.5x angular number density of Quaia; DESI full: ~5x
- Quaia is space-based, DESI ground-based; Quaia has fewer sources of systematics
- Independent samples & selection effects; complementary!
- Opportunity for **cross-correlations** between Quaia and various DESI samples

Outline: Cosmology & Astrophysics with Quaia

roughly from highest to lowest signal result:

Cross-correlations with CMB lensing

Alonso + 2024[incl KSF] (2410.24134)

The kinematic dipole

Williams+ [incl KSF] (in prep)

Spatial correlation with gravitational waves

Veronesi+2024 [incl KSF] (<u>2407.21568</u>)

Cross-correlation of Quaia with CMB Lensing

D. Alonso, G. Fabbian, **KSF**, A. C. Eilers, C. Garcia-Garcia, D. W. Hogg, H.-W. Rix, 2023 (2306.17748)

Sensitive to the growth of structure across cosmic time; aim to constrain S_{\circ} with scales and redshifts complementary to existing measurements

Quaia x CMB Lensing: C_1 measurements

Quasar autocorrelation

Quasar-CMB lensing crosscorrelation

- Split Quaia into two z-bins, 0<z<1.5 and 1.5<2<5
- Compute **projected 2D clustering** (auto and cross) in C_i , space
- Results **robust** against scale cuts, redshift uncertainties, residual systematics, etc.

Measuring S_8 : Cosmological constraints

Measuring S_8 : Breaking the S_8 degeneracy

Measuring S_8 : The growth of structure out to high-z

Piccirilli+2024 [incl. KSF] (<u>2402.05761</u>) Giulia Piccirilli, University of Turin

One of the highest-7 measurements of σ_{\circ}

Consistent w/

[Bonus] Measuring b(z): Evolution of quasar bias out to high-z

Piccirilli+2024 [incl. KSF] (2402.05761)

Slightly less steep evolution at high-7 than eBOSS

Alonso+2024 [incl **KSF**] (2410.24134)

The turnover scale appears at very large scales today—but not too large for Quaia!

But... are we sure we detect a turnover in the data?

Measuring k_{equality} : The power spectrum turnover scale

Alonso+2024 [incl **KSF**]

depending on z-bins, scale cuts, auto vs. cross, etc

Measuring k_{equality} : The power spectrum turnover scale

Alonso+2024 [incl **KSF**] (2410.24134)

Measurement k_{equality} at 20% level; agrees with Planck

Combined with supernovae data, 27% measurement of H_0

Bonus: Assuming H_0 , we can measure the CMB temperature T_{CMB} independent of the CMB blackbody spectrum:

$$T_{\text{CMB}} = 3.10^{+0.48}_{-0.36} \,\text{K}$$

Measuring f_{NI} : primordial non-Gaussianity in large-scale structure

- The **initial perturbations** in the early universe are well-described by a Gaussian random field; primordial non-Gaussianity (PNG) would indicate exotic inflationary models
- PNG would appear as a **scale-dependent bias** in large-scale structure, modifying the largest scales
- Quaia's immense volume and well-understood selection effects make it a natural sample for measuring PNG; we consider local-type PNG, characterized by the parameter $f_{\rm NL}$

Castorina+2019 (1904.08859)

Measuring f_{NL} : primordial non-Gaussianity in large-scale structure

- **Data**: Use cross-correlation with CMB lensing and the quasar autocorrelation, in two *z*-bins; systematics deprojection
- Model: fixed cosmology with free $f_{\rm NL}$, and bias amplitudes in each z-bin
- Constraints driven by cross-correlation, and high-z bin
- Robustness to analysis choices thoroughly tested (scale cuts, bias model, covariance, etc)

Measuring f_{NI} : Quaia x CMB lensing results

Fiducial results: $f_{\rm NL} = -20.5^{+19.0}_{-18.1}$ consistent with $f_{\rm NL} = 0$ at 1.1 σ level bias parameters consistent w/ model

Comparison to other measurements

Tightest constraint on f_{NL} from projected datasets; consistent with other

measurements

The Kinematic Dipole

CMB dipole (Planck):

towards (l, b) = $(264^{\circ}, 48^{\circ})$ velocity 369.82 ± 0.11 km/s

The motion of our Solar System with respect to the CMB induces a *dipole* in CMB temperature. Given **cosmic isotropy**, we expect to see the same dipole in large-scale structure (more sources in the direction of our motion).

The Kinematic Dipole in Large-Scale Structure

Difference between CMB and LSS estimations could indicate issues with LCDM. Some analyses show much higher dipole amplitude in quasar samples, but others find consistency.

~2.4x expected amplitude from CMB at 4.9σ significance **~consistent** (27°) with CMB direction

consistent with CMB amplitude and CMB direction; large uncertainties

The Kinematic Dipole in Quaia

Quaia G<20.0, selection function-corrected

Standard approach (least-squares fit to dipole modes): Quaia consistent with **CMB direction**, but with $\sim 2.5x$ amplitude of CMB expectation.

We suspect contamination by unmodeled **excess power in low-l modes**; however, these are difficult to measure thanks to **mode coupling** induced by the survey mask.

The Kinematic Dipole: A map-level simulation-based approach

- Generate mock skies with input parameters: dipole amplitude & level of excess power at low-l's ($1 \le l \le 8$); apply sel. function
- Fix dipole direction to CMB expectation; draw random a_{lm} 's; include expected shot noise
- Use **A**pproximate **B**ayesian **C**omputation to generate maps that match Quaia up to some resolution

Single example mock

Quaia G<20.0, selection-function corrected, smoothed

Abby Williams, UChicago

Mean of posterior mock samples

Williams, **KSF**, Hogg + (in prep)

Kate Storey-Fisher | Stanford KIPAC | tinyurl.com/ksf-bccp-2025 | 32

The Kinematic Dipole: Quaia Results

Posterior on parameters given by final generation of mocks consistent with Quaia

Infer a dipole amplitude ~1.7x CMB expectation (assuming CMB direction), and a moderate level of excess power at l≤8; but still consistent with CMB expectation at ~1.6σ

The Kinematic Dipole in CatWISE

Reproduce Secrest+21 result using standard approach: dipole in ~similar direction, ~2.4x larger amplitude than expectation

The Kinematic Dipole in CatWISE: Systematics corrections

Linear ecliptic latitude correction (S21)

New: CatWISE selection function model

Uncorrected catalog has 4% trend with ecliptic latitude; S21 applies linear correction

We model effects of dust, unWISE source density, unWISE scan pattern, zodiacal light; reduces ecliptic latitude trend to 0.08%

The Kinematic Dipole: CatWISE Results

Original systematics model

Dipole amplitude $\sim 1.5x$ CMB expectation, some excess power; consistent with CMB expectation at $\sim 1.3\sigma$

Full systematics model

Improved systematics correction results in even stronger consistency CMB expectation (~1.1x amplitude)

Quaia x Gravitational Waves: Constraining the AGN formation channel

Possible mechanism for binary merger: AGN accretion disks could accumulate binaries via capture & migration; gas interaction facilitates mergers

Would result in:

A spatial correlation between gravitational wave events & AGN!

Veronesi+2024

[incl **KSF**]

2407.21568)

159 LVK (O3 & O4) GW events

Quaia AGN to z < 1.5

Compute likelihood given GW localization regions & expected number of quasars

requires understanding Quaia completeness as a function of magnitude & ?

Quaia x Gravitational Waves: Estimating Quaia's completeness

Find that Quaia is highly complete up to **z<1** and **L>10**^{45.5}!

Lower completeness for fainter sources and higher redshifts

Niccolò Veronesi, Leiden

Veronesi+2024 [incl **KSF**] (2407.21568)

Quaia x Gravitational Waves: Upper limits on AGN formation channel

brighter

Veronesi+2024 [incl **KSF**] (2407.21568)

For brighter (>10⁴⁵ ergs/s) AGN, we place an ~11% upper limit (at 95% CL) on the fractional contribution of the AGN formation channel to binary merger events.

Next: Incorporate galaxies in addition to AGN to better constrain f_{AGN} Eventually: Use to improve dark siren measurements

Other cosmological applications of Quaia in progress

$f_{ m NL}$ with Angular Redshift Fluctuations

Void analyses

Matter density & velocity field reconstruction

& many more possibilities!

- quasar duty cycle
- 3d clustering
- kNN analysis ++

Also chat with me about...

Simulation-based inference for galaxy clustering

with R. Angulo, M. Pellejero-Ibañez, M. Zennaro, D. Lopez, ++

AGN formation channel modeling for dark siren analyses

with I. Magaña-Hernandez, S. Seher Gandhi, ++

The Aemulus Project: Emulation for small-scale clustering

with R. Wechsler, J. Tinker, H. Wang, ++

Summary & takeaways:

- Quaia, a ~1.3M quasar catalog based on *Gaia* and unWISE, is the largest-volume quasar sample with decent-precision redshifts. It has resulted in competitive and complementary cosmological analyses:
 - Quaia x CMB lensing constrains S_8 , σ_8 to high- π_8 ; breaks Ω_m - σ_8 degeneracy
 - Detect *P(k)* turnover; measure matter-radiation equality to 20%
 - Measure f_{NL} with σ =19 (tightest constraint from projected statistics)
 - **Kinematic dipole** shows some tension with CMB expectation, but anomalously high low-/modes suggest residual contamination
 - 11% upper limit on AGN formation channel of binary mergers via spatial correlation of Quaia & LVK sources
- And many more potential applications! *Including yours?!* Quaia catalog & data products available at: zenodo.org/records/8060755

Extra Slides

Quaia vs. DESI quasar samples

Quaia vs. DESI quasar samples

SDSS eBOSS: ~200,000 optical, spectroscopic quasars

Anand Raichoor, EPFL / Ashley Ross, Ohio State University / SDSS Collaboration

Power spectrum analysis, $\chi_{\text{eff}} = 1.48$

Limited by sky area & systematics

WISE: all-sky, mid-IR quasars with ensemble redshifts

Limited by minimal redshift information

Modeling the Quaia selection function: systematics templates

1000 number of single-exposure images in coadd in W1 in healpixe

Modeling the Quaia selection function

The quasar catalog landscape

Quaia redshift distribution

Quaia redshift dependence

Quaia G-dist and sample overlaps

Quaia: Comparison to other quasar catalogs

	N	$f_{ m sky}$	$ar{n}, ext{deg}^{-2}$	$V_{ m span}, \ (h^{-1}{ m Gpc})^3$	$V_{ m eff}, \ (h^{-1}{ m Gpc})^3$	$z_{ m med}$	$f(\delta z < 0.01)$	$f(\delta z < 0.1)$
Quaia	1,234,715	0.73	40.78	143.78	7.08	1.48	0.63	0.84
Gaia Purer	1,647,311	0.73	54.42	143.76	9.24	1.63	0.53	0.62
G < 20.5	1,286,788	0.73	42.51	143.76	6.50	1.61	0.62	0.70
WISE-PS1	2,386,121	0.56	103.89	109.08	20.88	1.38	0.11	0.71
$G_{ m eff} < 20.5$	1,130,925	0.56	49.25	109.06	7.32	1.41	0.12	0.76
SDSS DR16Q	637,371	0.26	60.18	50.30	4.16	1.77	~1	~1
$G_{ m eff} < 20.5$	297,940	0.26	28.17	50.23	1.18	1.67	~1	~1
eBOSS Clustering	409,286	0.14	72.52	26.80	3.21	1.60	~1	~1
$G_{ m eff} < 20.5$	190,263	0.14	33.96	26.61	1.01	1.49	~1	~1

Quaia x CMB Lensing: Robustness tests

Constraints on primordial non-Gaussianity (f_{NI})

Fabbian+ (in prep)

• Quaia has significantly lower systematics before mitigation than eBOSS

- Quaia's large volume & well-modelled systematics lends it to f_{NI} measurement
- Find $\sigma(f_{NI}) = 30$ (-75 < f_{NI} < 64 at 95% CL)

Quaia x CMB lensing: cosmology dependence of fits

Quaia x CMB lensing: Deprojection dependence

Quaia x CMB lensing: Polarization tests

Quaia x CMB Lensing: C_1 measurements

Quasar autocorrelation

Quasar-CMB lensing cross-correlation

- Split Quaia into two z-bins, 0 < z < 1.5 and 1.5 < z < 4
- Compute projected 2D clustering (auto and cross) in C_i space
- Results robust against scale cuts, redshift uncertainties, residual systematics, etc.

Quaia x CMB Lensing: C_1 measurements

Quaia x CMB lensing: Systematics tests

The Growth of structure out to high- χ

Piccirilli+2024 [incl. KSF] (2402.05761) Giulia Piccirilli, Oxford

Fig. 14.— Constraints on the local expasion rate H_0 and on the ratio of the CMB temperature to the COBE-FIRAS value Θ_{CMB} . Results are shown for our measurement of the power spectrum turnover in combination with uncalibrated supernova data from Pantheon+ (orange), and including an external constraint on H_0 from calibrated supernova data by SH0ES (blue).

The all-sky samples

S21:

- 291 masked regions
- Galactic plane cut (fiducial 30 deg)

Quaia:

- S21 masks and galactic plane cut
 + mask pixels where completeness < 0.5
- Source counts corrected by the selection function

Smoothed to 1 steradian scales:

Dipole amplitude expectation

Measuring the Kinematic Dipole: $Y_{l,m}$ spherical harmonic fitting

- Linear least-squares fit to spherical harmonics templates
- But *Y* stop at the dipole?
- From best-fit coefficients, compute multipoles *C*'s

• • •

Quaia dipole dependence on *l*-max and regularization

 $\ell_{max} = 2$

 $\ell_{\text{max}} = 1$

Angular power spectra

- Measure the dipole (ell=1) in addition to higher multipoles ($1 \le \text{ell} \le 10$)
 - Anomalous power at several large angular scales could point to systematics contamination
- Linear least-squares fit to spherical harmonics templates

Regularization: What do we believe about the masked sky regions?

We can reconstruct the maps from the best-fit spherical harmonic coefficients:

The expected dipole: Calculating x

Slope of the source counts at the flux limit of the sample:

$$x \equiv -\left. \frac{\mathrm{d} \ln N(>S_{\nu})}{\mathrm{d} \ln S_{\nu}} \right|_{S_{\min}}$$

The expected dipole: Calculating α

Assume that the flux density of each source follows a power law:

$$S_{\nu}(\nu) \sim \nu^{-\alpha} \quad \Rightarrow \quad \alpha = -\frac{\mathrm{d} \log S_{\nu}}{\mathrm{d} \log \nu}$$

- We can calculate α for each source from their AB magnitudes:
 - W1-W2 for CatWISE
 - BP-RP for Quaia
- Effective spectral index is the mean alpha

Simulations of dipole maps contaminated with other low-l modes

Contamination by other low-/modes biases the assessment of the significance of the dipole measurement.

"These issues mean that the dipole in the [CatWISE] quasar catalogue has an uncertainty large enough that consistency with the cosmic microwave background (CMB) dipole cannot be ruled out."—Abghari+2024

The Kinematic Dipole in Large-Scale Structure

Mixed results in analysis of current quasar samples; method- and sample-dependent

~2.4x expected amplitude from CMB at 4.9σ significance ~consistent (27°) with CMB direction

consistent with CMB amplitude **consistent** with CMB direction

Measuring the Kinematic Dipole

Regularization strength set by matching the dipole amplitude in full-sky and cut-sky Poisson-noise simulations

The Kinematic Dipole in CatWISE

Reproduce Secrest+21 result using standard approach: dipole in ~similar direction, ~2x larger amplitude than expectation

Systematics corrections in CatWISE

Linear ecliptic latitude correction (S21)

Uncorrected catalog has 4% trend with ecliptic latitude; S21 applies linear correction

New: CatWISE selection function model

We model effects of dust, unWISE source density, unWISE scan pattern, zodiacal light; reduces ecliptic latitude trend to 0.08%

The Kinematic Dipole: Conclusions

But... choosing the regularization strength is non-trivial!

Conclusion: we need to simulate the dependence of the recovered dipole on regularization and high-l excess power.

 $D = \sim 1.9x$ expectation

Quaia dipole dependency on sample selection

[standard approach, no regularization]

CatWISE dipole dependency on sample selection

-75°

l (deg)

[standard approach, no regularization]

Measurements of the kinematic dipole in current quasar samples are *not* robust to sample selection choices.

Quaia x Gravitational Waves

Quaia x Gravitational Waves

Quaia x Gravitational Waves

Measuring the Kinematic Dipole in Quaia

Williams, **KSF**, Hogg + (in prep)
Abby Williams, UChicago

Linear least-squares fit to l=1 spherical harmonics templates, $Y_{l,m}$:

Estimate a dipole in **similar direction** to CMB, but **#x larger amplitude** than CMB
expectation

But *Y* stop at the dipole?

Let's fit to higher l-modes; from best-fit coefficients, compute multipoles C_l 's

32.8378

34.2905

Williams, **KSF**, Hogg + (in prep)

Quaia

Computing the *l* >1 modes requires regularization, because the **cut sky** induces mode coupling; results are very sensitive to this choice!

