N-body Simulations and Photometric Redshifts

> Hans Stabenau 12/02/2008

Collaborators

- U. of Penn:
 - Bhuvnesh Jain
 - Mike Jarvis
 - Gary Bernstein
 - Mark Devlin
 - Marie Rex
 - James Aguirre

- U. of Washington
 - Andrew Connolly
- U. of BC
 - Ed Chapin
 - Gaelen Marsden
 - Douglas Scott
 - Guillaume Patanchon

Overview

- Motivation
 - Cosmic acceleration
 - Large-scale structure
- N-Body simulations
- Photometric redshifts
- Submillimeter galaxies (briefly)

Evolution of the Universe

Cosmic Acceleration

Image credit: NASA

Lightning Review of GR

• Specify action: $S = \frac{1}{16\pi G} \int d^4x \sqrt{-gR} + S_M$ Choose coordinates (metric): $ds^2 = -dt^2 + a^2(t)dx^2$ • Equations of motion (Einstein eqn.): $R_{\mu\nu} + \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G_N T_{\mu\nu}}{2}$ Expansion (Friedmann eqn.): $H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G_{N}\rho}{2}$

Deceleration Parameter

• Dimensionless deceleration:

$$q(a) \equiv -\frac{\ddot{a}a}{\dot{a}^2} = \frac{dH^{-1}}{dt} - 1$$

$$q(a) = \frac{1}{2}\left(1 + 3\frac{P}{\rho}\right) = \frac{1}{2}(1 + 3w)$$

• But w controls $\rho(a)$:

 $ho(a) \propto a^{-3(1+w)}$

Energy Density Evolution

• Cold Dark Matter: P = 0, so w = 0 $ho_{
m CDM}(a) \propto a^{-3}$

• Radiation: w = 1/3 $ho_{\gamma}(a) \propto a^{-4}$

• Dark Energy: $w \approx -1$ $ho_{\Lambda}(a) \propto a^0 \propto {
m const!}$

A Cosmic Puzzle

Cosmological Timeline

Modified Growth

- Perturbed metric $ds^{2} = -[1 + 2\Phi]dt^{2} + a^{2}(t)[1 - 2\Psi]dx^{2}$ Conservation of stress-energy gives $-k^2 \Psi = a^2 4\pi G_N \rho_{bq} \delta f(k,t)$ $\overline{\Psi} = \overline{\Phi}\eta(k,t)$ • Growth factor: $\delta(k,t) = D(t) \delta(k)$ $\ddot{D} + 2H\dot{D} = \frac{3}{2}H_0^2 \frac{\Omega_m}{a} D \left| \frac{f(k,t)}{\eta(k,t)} \right|$
- For GR, $f = \eta = 1$, so D is <u>scale-independent</u>.

DGP growth factor slide

The Model

- Modification on large scales $\tilde{\phi}(k) = \frac{3}{2} \frac{\Omega_{m0}}{a} \frac{\delta_k}{G_k} \left[1 + \alpha \frac{1}{1 + (2\pi k r_s/a)^2} \right]$ $\phi(\mathbf{r}) = -G \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \left[1 + \alpha \left(1 - e^{-\frac{|\mathbf{r} - \mathbf{r}'|}{r_s}} \right) \right]$
 - Gives <u>scale-dependent</u> growth:

$$f(k,t) = 1 + \alpha \frac{1}{1 + (2\pi k r_s/a)^2}, \quad \eta = 1$$

N-Body Simulation

- Put dark matter particles in a box
- Compute all the gravitational forces
- Update positions and velocities
- Repeat for the age of the universee
- Simulation parameters:

 $-N_{p} = 128^{3}$ $-L_{box} = 143 \text{ Mpc}$ $-m_{p} = 1.1 \times 10^{10} \text{ M}_{\odot}$

Dark Matter after 3 Gyr

Dark Matter after 13.7 Gyr

Dark Matter Simulation

• Numerically Integrate EOM:

 $\frac{d\mathbf{r}}{dt} = \mathbf{u} \qquad \frac{d\mathbf{x}}{da} = \left(\frac{H_0}{\dot{a}}\right)\mathbf{p}/a^2$ $\frac{d\mathbf{u}}{dt} = -\nabla\Phi \qquad \frac{d\mathbf{p}}{da} = -\left(\frac{H_0}{\dot{a}}\right)\nabla_x\phi$ $\nabla^2\Phi = 4\pi G\rho - \Lambda \qquad \nabla^2_x\phi = \frac{3}{2}\Omega_{m0}\delta/a$

Dark Matter Simulation

• Numerically Integrate EOM:

 $d\mathbf{r}/dt = \mathbf{u}$ $d\mathbf{x}/da = \left(\frac{H_0}{\dot{a}}\right)\mathbf{p}/a^2$

 $d\mathbf{u}/dt = -\nabla\Phi$ $d\mathbf{p}/da = -\left(\frac{H_0}{\dot{a}}\right)\nabla_x\phi$

 $\nabla^2 \Phi = 4\pi G\rho - \Lambda \left[\nabla_x^2 \phi = \frac{3}{2} \Omega_{m0} \delta / a \right]$

Solve for the forces via FFT

Power Spectra

Stabenau and Jain, Phys.Rev. D74 (2006) 084007

Gravitational Lensing

- Dark matter is not directly observable
- But, GR predicts that mass bends light:

Image credit: Michael Sachs (Wikipedia)

Cosmological Timeline

Ray Tracing

Lensing Distortions

Weak Lensing

Convergence and shear

$$\kappa = \frac{1}{2} \int_{0}^{\chi_{H}} d\chi W(\chi) \nabla^{2}(\Phi + \Psi)$$

$$\gamma_{1} = \frac{1}{2} \int_{0}^{\chi_{H}} d\chi W(\chi) [\partial_{1}\partial_{1} - \partial_{2}\partial_{2}](\Phi + \Psi)$$

$$\gamma_{2} = \int_{0}^{\chi_{H}} d\chi W(\chi) \partial_{1}\partial_{2}(\Phi + \Psi)$$

• Convergence power spectrum $P_{\kappa}(l) \propto \int_{0}^{\chi_{H}} d\chi W^{2}(\chi) k^{4} P_{\Phi+\Psi}\left(k = \frac{l}{\chi}, \chi\right)$ $\propto \int_{0}^{\chi_{H}} d\chi W^{2}(\chi) f^{2}(k, t) P_{\delta}\left(k = \frac{l}{\chi}, \chi\right)$

Convergence Power Spectra

Cosmological Timeline

Photometric Redshifts

- Unbiased galaxy redshifts are important for:
 - Weak Lensing (e.g. Jain, Connolly, Takada '06, Mandelbaum et al. '07)
 - Large-scale structure (3D galaxy surveys)
 - Cluster lensing
 - Astrophysics: SFR(z)
- Need too many for spectra

Color-Redshift Degeneracy

Surface Brightness and Redshift

• Break the color-redshift degeneracy:

$$SB \equiv m + 2.5 \log A$$

$$= \left[-2.5 \log \frac{L}{4\pi D_L^2(z)}\right] + \left[2.5 \log \frac{R_p^2}{D_A^2(z)}\right] + \text{const.}$$
$$= \left[5 \log \left(1+z\right) \cdot \chi(z)\right] + \left[5 \log \frac{\left(1+z\right)}{\chi(z)}\right] + \text{const.}$$
$$= 10 \log \left(1+z\right) + \text{const.}$$

- Independent of cosmology
- Lensing conserves SB

GOODS-N SB(z)

Priors

J033207.18-274743.2

Calibration and Test Data

- Space-based data:
 - GOODS-S (calibration sample): 603 spectra
 - GOODS-N (test sample): 1814 spectra
 - 0.05" seeing
- Ground-based data:
 - VVDS: 4180 spectra, 0.5 deg²
 - 0.5-1" seeing
- We use half for calibration and half for testing
- Demand ≥ 95% confidence for spectro-z's
- Almost all galaxies have $z \le 1.5$

Bias(z) and Scatter(z)

Error distributions

Ultra-Luminous Infrared Galaxies

Discovered by IRAS in 1980's

Increasing bolometric luminosity Higher FIR/Optical ratio

Sanders and Mirabel 1996

Major mergers trigger massive star formation leading to high luminosities.

HST Images of ULIRGs from http://www.pha.jhu.edu/~meurer/ research/uvlirgs.html

BLAST Palloon-borne Large-Aperture Submillimeter Telescope

Antarctica 2006: First Extra-galactic Survey Results

Mark Devlin

University of Pennsylvania

CDF (France) Guillaume Patanchon

U of T Peter Martin Barth Netterfield Marco Viero Don Wiebe

JPL Jamie Bock UPenn Simon Dicker Jeff Klein Marie Rex Chris Semisch Matt Truch

Brown University Greg Tucker U of Miami Josh Gundersen Nick Thomas

INAOE (Mexico) David Hughes Itziar Aretxaga

U Puerto Rico Luca Olmi Cardiff University Peter Ade Matt Griffin Peter Hargrave Phil Mauskopf Carole Tucker Enzo Pascale

Photo: Mark Halpern

Submillimeter Photo-zs

Submillimeter K-Correction

ULIRGS ARE DETECTABLE AT LARGE REDSHIFTS IN SUBMM

Cosmic Infrared Background

Conclusion

- Cosmic acceleration: DE or AG
- Simulated an approximate AG model
 - Computed lensing observables
- Photo-z's are important for observations
 - SB(z) helps constrain them
- In progress: BLAST analysis
 - ULIRGs and the far-IR background
 - -SFR(z)