Locomotion in the 200

AuzzeSlosar, BCCP

Introduction

- new fellow at BCCP, the other oliver
- looking for new contacts / projects
- Will talk about two projects:
- peculiar velocities of SN (with Kate Land \& Chris Gordon)
- Galaxyzoo project (with Gzoo team, PI Chris Lintott)
- (sterile neutrinos as a DM candidate next wed)

Nobel prizes this morning


Albert Fer and Peter Gruenberg for the disc overy of Giant Ma gnetor esista ne Congratulations:

## SNlarecap

- SN go bang when when Chandrasekhar limit is reached.


## HST:SN 1994D

- expected to work as standard candles
- empirically correct for scatter via rate of decline, colour, etc.

$$
F=\frac{L}{4 \pi d_{L}^{2}}
$$

$$
d_{L}=(1+z) \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
$$

## So, measure Hubble diagram



- measure magnitudes: $m=5 \log d_{L}+25+M$
- claim the existence of accelerated expansion, etc.


## Add velocity perturbations

- Measured redshift changes: $1+z_{m}=\left(1+z_{i}\right)\left(1+\left(\vec{v}_{e}-\vec{v}_{o}\right) \cdot \vec{n}\right)$
- hence the "theoretical" distance assuming homogeneous cosmology is given by

$$
d_{L}^{t h}=d_{L, i}+\left(d_{L, i}+\frac{(1+z)^{2}}{H(z)}\right)\left(\vec{v}_{e}-\vec{v}_{o}\right) \cdot \vec{n}
$$

- Measured luminosity changes as

$$
d_{L}^{m e}=d_{L, i}\left(1+2\left(\vec{v}_{e}-\vec{v}_{o}\right) \cdot \vec{n}+\vec{v}_{o} \cdot \vec{n}\right)
$$

(See e.g. Hui \& Greene)
and so...

- Expression for luminosity fluctuation is given by

$$
\frac{\delta d_{L}}{d_{L}}=\frac{d_{L}^{m e}-d_{L}^{t h}}{d_{L}^{t h}}=\vec{n} \cdot\left(\vec{v}_{e}-\left(\frac{(1+z)^{2}}{H(z)}\right) \cdot\left(\vec{v}_{e}-\vec{v}_{o}\right)\right)
$$

- We can account for observers velocity from the CMB monopole
- from here one can go and derive local velocity fields and moments


## Corretated luminosities

- Correlated velocities lead to correlated luminosities

$$
\begin{gathered}
\xi\left(\mathbf{r}_{\mathbf{i}}, \mathbf{r}_{\mathbf{j}}\right)=\sin \theta_{i} \sin \theta_{j} \xi_{\perp}\left(r, z_{i}, z_{j}\right)+ \\
\cos \theta_{i} \cos \theta_{j} \xi_{\|}\left(r, z_{i}, z_{j}\right) \\
\xi_{\|, \perp}=D^{\prime}\left(z_{i}\right) D^{\prime}\left(z_{j}\right) \int_{0}^{\infty} \frac{\mathrm{dk}}{2 \pi^{2}} P(k) K_{\|, \perp}(k r) \\
K_{\|}(x)=j_{0}(x)-\frac{2 j_{1}(x)}{x}, \quad K_{\perp}(x)=j_{1}(x) / x
\end{gathered}
$$

## Likelihood

- So, one can write the correlation function for luminosity perturbations

$$
C_{i j}=\left\langle\left(\frac{\delta d_{L}}{d_{L}}\right)_{i}\left(\frac{\delta d_{L}}{d_{L}}\right)_{j}\right\rangle
$$

- the exact likelihood is possible with $O(100)$ supernovae:

$$
L=\frac{1}{(2 \pi)^{(N / 2)}|C|} e^{\left(-d^{T} C^{-1} d\right)}
$$

## Covariances



## Covariallees



Results:

- Use 133-9=124 nearby ( $z<0.12$ ) SN from Sha et al
- Average separation $100 \mathrm{Mpc} / \mathrm{h}$, mean redshift 0.024
- vary the usual cosmological parameters plus:
- absolute magnitude offset
- magnitude scatter
- velocity scatter
- Add HST + BBN prior to exclude wild models
- In some cases add WMAP or 147 Davis et al SN.


## Results:

- We get a 3-4 sigma detection of the effect:

$$
\sigma_{8}=0.79 \pm 0.22
$$



- Covariances act as a source of signal for power spectrum parameters and matter density
- Covariances act as a source of noise for standard background analysis - \# of SN effectively reduced


## Future: FManalysis



- SN factory: 300 pieces over 10000 sq deg, $0.03<z<0.08$
- SNAP: 2000 pieces over 10 sq deg, $0.2<z<1.7$


## Future: FManalysis


. What the heck: $0.03-0.08$ vs $0-0.08$

CMB dipole from SN

- CMB Doppler dipole has been seen in SN
- Hand-waving arguments about "high-enough" redshift:
- our method quantifies these
- Direction and magnitude error-bars necessarily widen
- We fit for CMB dipole taking into account or ignoring correlated velocities.

CMB dipole - results


CMB dipole - results


CMB dipole - results


Bottom line:

- detection of our dipole motion to below 3 sigma
- performing fisher matrix indicates that this will never get much better.


## Distan ce fluctuation us in general

$$
\begin{aligned}
\tilde{d}_{L}\left(z_{S}, \mathbf{n}\right)= & \left(1+z_{S}\right)\left(\eta_{O}-\eta_{S}\right)\left\{1-\frac{1}{\left(\eta_{O}-\eta_{S}\right) \mathcal{H}_{S}} \mathbf{v}_{O} \cdot \mathbf{n}-\left(1-\frac{1}{\left(\eta_{O}-\eta_{S}\right) \mathcal{H}_{S}}\right) \mathbf{v}_{S} \cdot \mathbf{n}\right. \\
& -\left(2-\frac{1}{\left(\eta_{O}-\eta_{S}\right) \mathcal{H}_{S}}\right) \Psi_{S}+\left(1-\frac{1}{\left(\eta_{O}-\eta_{S}\right) \mathcal{H}_{S}}\right) \Psi_{O} \\
+ & \frac{2}{\left(\eta_{O}-\eta_{S}\right)} \int_{\eta_{S}}^{\eta_{O}} d \eta \Psi+\frac{2}{\left(\eta_{O}-\eta_{S}\right) \mathcal{H}_{S}} \int_{\eta_{S}}^{\eta_{O}} d \eta \dot{\Psi}-2 \int_{\eta_{S}}^{\eta_{O}} d \eta \frac{\left(\eta-\eta_{S}\right)}{\left(\eta_{O}-\eta_{S}\right)} \dot{\Psi}+\int_{\eta_{S}}^{\eta_{O}} d \eta \frac{\left(\eta-\eta_{S}\right)\left(\eta_{O}-\eta\right)}{\left(\eta_{O}-\eta_{S}\right)} \ddot{\Psi} \\
& \left.\quad-\int_{\eta_{S}}^{\eta_{O}} d \eta \frac{\left(\eta-\eta_{S}\right)\left(\eta_{O}-\eta\right)}{\left(\eta_{O}-\eta_{S}\right)} \nabla^{2} \Psi\right\}
\end{aligned}
$$

- from Bonvin et al., also Sasaki, Pyne \& Birkinshaw, Hui \& Greene
- Valid as long as metric perturbations small (always)
- Lensing dominates at high redshift
- Angular diameter distance does exactly the same::


## Multipoteexpan sion



- from Hannestad et al.
- Dipole traces $H(z)$ (another Bonvin paper)

Conclusions so far

- SN luminosity fluctuations will be very important in the next few years:
- need to be taken into account when anchoring low-z Hubble diagram
- potentially a source of systematic
- non-linearities need to be understood better
- Already with the present data one can make a very decent detection of the effect

GALAXY ZOO - Introduction

- Crazy paper by Longo

Does the Universe Have a Handedness? University of Micligan, Amp Afroor, MI 48109-1120
$\qquad$
$\qquad$
 $\qquad$
$\qquad$
$\qquad$

GALAXYZOO - Introduction
(a)
(b)

(c)

- Must be wrong: would have been seen by now.
- Nothing obviously wrong with the paper: potentially interesting secondary effects?

GALAXY ZOO

- Classify "one million" (870 thousand actually) SDSS galaxies visually
- anyone can participate after passing a short tutorial
- Approved by SDSS; team includes members from Oxford, Portsmouth, John Hopkins and now Berkeley
- Project composed of website and a forum
- Programming donated by Dan Andrescu, web-design by Fingerprint Digital Media
- Extra servers donate by JHU



## Hello zookeeper_anze

October 06, 2007, 08:54:00 PM

Show unread posts since last visit.
Show new replies to your posts.
Total time logged in: 7 hours and 34 minutes.


Galaxy Zoo Forum

## E Welcome to Galaxy Zoo

Last post by Alice
in Why put your image in th. on August 27, 2007, 11:48:31 AM

## E The objects



Object of the Day
The Galaxy Zoo team nominate their Object of the Day Moderators: Alice, Edd, StuartA, bamford

Stunning sights!
Post the most beautiful objects here. Remember to give the reference number. Moderators: Alice, Edd, StuartA, bamford

Weird and wonderful
Post curiosities here. Please remember to include the reference number. Moderators: Alice, Edd, StuartA, bamford

## 18669 Posts

## Last post by Alice

 in Re: Saturday 6th Octoberon Today at 09:45:02 AM

Last post by genel
in Re: Wanted! Galaxy pairs. on Today at 08:44:54 PM

Last post by dovicchi in All in one
on Today at 08:38:17 PM

## E The site and the science



Last post by ilrobi
in Re: News from the front on Today at 07:45:02 AM

Interestin g objects

## Interesting objects



The Astrophysical Journal, 662: L51-L54, 2007 June 20 0 2007. The Amerkan Astronomkal Society. All rights reserved. Printed in U.S.A.

THE 8 O'CLOCK ARC: A SERENDIPITOUS DISCOVERY OF A STRONGLY LENSED LYMAN B THE SDSS DR4 IMAGING DATA

Sahar S. Allam, ${ }^{1,2}$ Douglas L. Tucker, ${ }^{1}$ Huan Lin, ${ }^{1}$ H. Thomas Diehl,,${ }^{1}$ James Ani<br>Elizabeth J. Buckley-Geer, ${ }^{1}$ and Joshua A. Frieman ${ }^{1,3}{ }^{1,3}$<br>Received 2006 November 3; accepted 2007 May 7; published 2007 May 31

We report on the serendipitous discovery of the brightest Lyman break galaxy (LBG) curren galaxy at $z=2.73$ that is being strongly lensed by the $z=0.38$ luminous red galaxy $\mathrm{J} 002240.91+143110.4$. The arc of this gravitational lens system, which we have dubbed the " 8 o'c to its time of discovery, was initially identified in the imaging data of the Sloan Digital Sky Survey 4; followup observations on the Astrophysical Research Consortium (ARC) 3.5 m telescope at Observatory confirmed the lensing nature of this system and led to the identification of the arc's spe of an LBG. The arc has a spectrum and a redshift remarkably similar to those of the previous rect brightest LBG (MS 1512-cB58, also known as cB58), but, with an estimated total magnitude c $(20.0,19.2,19.0)$ and surface brightness of $\left(\mu_{g}, \mu_{r}, \mu_{i}\right)=(23.3,22.5,22.3) \mathrm{mag}_{\operatorname{arcsec}^{-2}}$, the 8 thrice as bright. The 8 o'clock arc, which consists of three lensed images of the LBG, is $162^{\circ}\left(9.6^{\prime \prime}\right)$ a length-to-width ratio of $6: 1$. A fourth image of the LBG-a counterimage-can also be identifie $3.5 \mathrm{~m} g$-band images. A simple lens model for the system assuming a singular isothermal ellipsoid yiel radius of $\theta_{\text {Ein }}=3.32^{\prime \prime} \pm 0.16^{\prime \prime}$, a total mass for the lensing LRG (within the $12.1 \pm 0.6 h^{-1} \mathrm{kpc}$ en Finstoin radiuc) of $135 \times 10^{12} h^{-1} \mathrm{M}$ and a mannification factor for the $\mathrm{R} C$ of $123^{+15.0}$ The

Interestin g objects

Interestin g objects

Interestin g objects

Interestin g objects

Back-lit galaxies s:

- Bill Keel (Alabama) is interested in "back-lit" galaxies to study dust-content and distribution
- 10 years ago Ray White and Chris Conselice found <20 usable pairs
- Recently he found spiral/elliptical pairs by clever filtering of SDSS redshift data
- The he asked people on GZ forum:
"I've kept track of the promising ones seen on galaxuzooforum so far and have almost 180. I knew intellectually that the number of superposed pairs was a strong function of survey depth, but this is breathtaking."


## Data reduction:

- The last snapshot of the data has
- 30 million datapoints from 75 thousand users
- around 30 datapoints per galaxy, queuing system insures sub-poisson distribution of datapoints



# Top users total bonkers: 

"Whenever I picked up spectacular objects I first wrote down the Ref. manually in a journal I am keeping for my original records which contains date, time \& brief descriptions of the image. Then for the really good ones I downloaded the page right away. For the less gorgeous ones I went back to do the downloading when I am not so busy.

ANIMALS OF THE ZOO ( 2 ), THE EXOTIC ENTITIES:

ANIMAL NO. (9) BLUE BIRD (PARROT? ) WITH BACK ON US
ANIMAL NO. ( 10 ) KANGAROO - HEAD TO RIGHT / TAIL TO LEFT
ANIMAL NO. ( 11 ) PLATYPUS - HEAD TO LEFT
ANIMAL NO. ( 12 ) STANDING SQUIRREL
ANIMAL NO. ( 13 ) BEAGLE WITH TAIL POINTING UPWARDS
ANIMAL NO. ( 14 ) SWIMMING PENGUIN - HEAD TO RIGHT

Data reduction:
Various methods of data reduction:

- Anarchic: treat all users equally
- Demo ratio: iteratively reweight users
- start with unit weights for all users
- get first inference about galaxy-types
- reweight users according to how they agree with estimates
- repeat until converged (3-4 iterations)
- Aristocratic: same as Democratic but add superusers from GE community
- Fascist: you can be your own superuser


## Data reduction:

Results:

- $36 \%$ is classified (>10 votes and $>80 \%$ agreement)
- $55 \%$ is good (votes not Poisson limited, but no clear agreement)
- $9 \%$ need more data


## Biases:

all galaxies with clean classification


## Biases:

$5566-22.50<\mathrm{M}_{\mathrm{r}}<-22.30$ galaxies
with clean combined-spirals classification

$10272-22.10<\mathrm{M}_{\mathrm{r}}<-21.90$ galaxies with clean combined-spirals classificati
$13287-21.70<\mathrm{M}_{\mathrm{r}}<-21.50$ galaxies with clean combined-spirals classification

- "If one million French believe in something, it doesn't make it true..."
- Comparison with Fukugita et al quite promising, but So and $S$ a are counted as elliptical in our sample.


## Axis in the Universe?

Immediately clear that something is going on:

- Raw data show 1.88 million clockwise vs 1.72 million anti-clockwise clicks, $9 \%$ or 100 sigma difference
- Anecdotal evidence that this is a known effect in physiology
- Processed data show about $5 \%$ excess
- Longo's data also show a $8 \%$ excess
- For shared data Longo and we agree at $99.9 \%$ level.
- "monopole" + asymmetric window function gives you a "dipole"
- Feeding mirrored images to quantify effect


## Correlation function



- Correlation
function consistent with monopole term only.
- The correlation function of sign of radial component of AM vector
- Around $4 \%$ have wrong sign, 20 deg DM/baryons misalignment


## Correlation function



- Confirms results of Sugai \& Iye, 1995
- Consistent with tidal torque theory (e.g. Barnes \& Efstathiou 1986)


## Reat-space correlation



- Confirms results of Sugai \& Ire, 1995
- Consistent with tidal torque theory (e.g. Barnes \& Efstathiou 1986)

Conclusions

- GZ00 an exciting project:
- it usefulness remains to be seen, but looks promising
- first papers soon
- V2: full Hubble fork
- V3: natural classifications based on FoF

