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Overview

• Measurements of the cosmic microwave background (CMB) 
continue to reveal a wealth of information about our universe

• Improved measurements will expand our understanding of 
neutrinos, dark matter, dark energy, and cosmological models

• Future CMB projects will revolutionize the field, but require bold 
steps in instrumental development

• Novel technology development: production and systematic control

• An Example: Feedhorns

• Technologies developed for CMB experiments open new 
opportunities for scientific exploration
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ΛCDM Cosmology
• Expanding, flat universe that began in a hot, dense state

• Dominated by dark energy and dark matter

• ΛCDM model describes our universe incredibly well… BUT it 
leaves many fundamental questions unanswered
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The CMB answers fundamental questions 

• CMB can measure the energy scale of inflation (r)

• One of the few ways to probe early universe ~10-36 s after its beginning
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The CMB answers fundamental questions 

• CMB can measure the energy scale of inflation (r)

• One of the few ways to probe early universe ~10-36 s after its beginning

• CMB measures the sum of the neutrino masses (∑mν)

• Compliment to neutrino oscillation experiments that measure Δmij
2

• CMB measures the number of relativistic species (Neff)

• Constrain/probe theories that predict new light particles

• CMB constrains dark matter and dark energy through the 

growth of structure (𝜎8), the expansion rate (H0), and the 

amounts of dark matter and dark energy

• Extremely accurate probe of these mysterious dark components

• Highly complementary to supernovae and large-scale structure studies
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CMB Temperature and Polarization Maps

Temperature and Polarization Power Spectra

Maps of Lensing and Sources

Science
• Theories of the early universe (r)

• ∑mν and Neff

• Contents and nature of dark matter and dark energy

• Formation and evolution of structure

• Information about astrophysical processes

Planck Collaboration 2015



Current State of the Field: CMB Instruments
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Added Polarization

QUaD - 2005

BICEP - 2006

QUIET - 2008

Planck - 2009

BICEP2 - 2010

Keck Array - 2010

ABS - 2012

ACTPol - 2013

POLARBEAR - 2012

SPT-Pol - 2012

BICEP 3 - 2015

SPIDER - 2015

Temperature Only

BOOMERanG -1998

DASI - 2000

WMAP - 2001

Atacama Cosmology 

Telescope (ACT) - 2007

SPT - 2007

Current Generation:

<10k detectors 

CLASS - 2016

Advanced ACTPol

(AdvACT) - 2017

SPT-3G - 2017

POLARBEAR 2 - 2019

Simons Array - 2019

BICEP Array - 2019/2020

SPIDER 2 – 2022

Next Few Years:

60k+ detectors

Simons Observatory 

(SO) - 2023

Next 10 Years

CMB-S4 (~500k 

detectors) - ~2030

LiteBIRD - late 2020s



Current State of the Field-Temperature
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Compiled by L. Page

Temperature is 

well 

characterized! 

Curvature Baryon 

Density
Dark Matter 

Density

Planck Collaboration 2015
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CMB Lensing

• Photons from the CMB are gravitationally deflected by structure

• Can reconstruct maps of the dark matter distribution

• Lensing probes the growth of structure → dark energy, ∑mν

• Need improved
temperature + polarization
measurements on small
angular scales across 
large areas of the sky

Planck Collaboration
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CMB Lensing

Planck Collaboration
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Galaxy Clusters via the
Sunyaev-Zel’dovich (SZ) Effect

• Photon energy boosted from scattering off high 
energy electrons in galaxy clusters via inverse 
Compton scattering

• Galaxy clusters are largest bound structures in 
the universe → mass profiles highly sensitive 
to effects of dark matter and dark energy on 
structure formation

• Signal does not dim with distance → picture of 
evolution

• Increased sensitivity to cluster outskirts → cluster 
astrophysics

• Cluster mass estimates are currently limited at 
the 5-10% level
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Particles Beyond the Standard Model 
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Standard Model:

Beyond the Standard Model:

Spin 
1

2
, 1, 

3

2

Spin 0

Planck (current):

Simons Observatory:

CMB-S4:
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Polarization in the CMB

CMB 

linearly 

polarized at 

decoupling 

by Thomson 

Scattering

Need 

quadrupolar

anisotropy to 

cause linear 

polarization

Scalar (Density) 

Perturbations

Tensor (G-wave) 

Perturbations

Vector (Vorticity) 

Perturbations

E-mode 

Polarization

(Even Parity)

B-mode 

Polarization

(Odd Parity)

U. Seljak and M. Zaldarriaga, 1997

M. Kamionkowski, A. Kosowsky, and A. Stebbins, 1997



Did a period of inflation occur in the early universe?

• Inflation offers several explanations
• Expansion yields nearly flat, 

homogeneous, isotropic universe
• Seeds density fluctuations
• Creates tensor perturbations 

(gravitational waves)

• B-modes are the cleanest channel 
to detect inflation → quantify with 
tensor-to-scalar ratio r

• r directly measures energy scale of 
inflation

• Probe quantum gravity and 
fundamental physics ~10-36 s after 
the universe began at grand 
unification theory energy scales 
(1016 GeV)
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Inflation ends

Inflation

A.D. Linde, 1982

A. Albrecht and P.J. Steinhardt, 1982



Current State of the Field-Polarization
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Compiled by L. Page

Small Angular Scales:

Information about the 

formation of structure →

neutrinos, dark energy, 

dark matter

Large Angular Scales:

Constrain r, early 

universe theories
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Measurement Challenges

• The amplitude of the B-mode 
signal is small (BICEP2/Keck 
Array r<0.06) → Need high 
sensitivity

• Polarized foreground 
contamination from 
synchrotron and dust emission 
→ Need wide frequency 
coverage

• Fluctuations in the unpolarized 
atmosphere, especially on 
large angular scales (ground-
based) → Need to lower 
atmospheric noise

The Simons Observatory Collaboration, 2018



Future Progress in CMB Science

• Progress is now driven by instrumental advancements

• Multichroic pixels → increased sensitivity and frequency coverage

• Increased pixel count → increased sensitivity

• Increased number of pixels/array

• Increased number of arrays

• Improved broadband optics → increased sensitivity and frequency 
coverage

• Polarization modulators → lower atmospheric noise
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Sensitivity Alone is Not Sufficient

• The science achievable with future experiments like 
SO and CMB-S4 will depend on how well we model 
and mitigate systematic effects and how well we 
calibrate our telescopes

• Future experiments like SO and CMB-S4 will have 
unmatched sensitivity

• As sensitivity increases, so does susceptibility to systematic 
effects

• Need improved simulations of systematics → inform 
instrument design and removal in analysis

• Need improved calibration → characterize instrument and 
remove these systematic effects
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Simons Observatory

• Located at an elevation of ~5200 m in the Atacama Desert in Chile

• Multichroic cameras 27/39 GHz, 90/150 GHz, 220/280 GHz

• 60,000+ detectors total
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Small Aperture Telescopes (SATs):

• Three ~0.5 m refractive telescopes

• Measure/constrain primordial B-mode

Large Aperture Telescope (LAT):

• One ~6 m crossed-Dragone

telescope with 7 optics tubes

• Small angular scale science



LAT Optics

• 6 m Crossed-Dragone

• Beam full width at half 
maximum (FWHM) at 
150 GHz is 1.4 arcmin

• 1.3˚ field of view (FOV) 
per optics tube

• 7.8˚ FOV total
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SAT Optics

• Refractive design, 3 lenses

• 17 arcmin FWHM at 150 GHz

• FOV=35˚
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Polarization Modulation: 

Continuously-rotating

Half-wave Plate (HWP)

• Atacama B-mode Search (ABS) 

pioneered HWPs for ground-based 

CMB experiments

• Polarization modulation mitigates 

atmospheric noise, systematic 

effects, and instrumental  

polarization leakage

• Can be used to calibrate and 

characterize instrument

Detector

Arrays

lenses

Dilution

refrigerator

HWP



Feedhorn-Coupled Arrays
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• Feedhorn defines the detector beam

• Couples light onto the ortho-mode transducer (OMT)

• OMT splits light into two orthogonal polarizations



Detectors and Readout

• 4 detectors/pixel: 2 orthogonal polarizations for each of 2 bands

• Transition-edge sensors (TESs): use the steep 
superconducting-to-normal transition of a superconductor to 
make an extremely sensitive detector (~160 mK)

• Read out with μMUX→~1000 detectors/line (vs ~64)
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TES

OMT

Filters



Production for Next-Generation Experiments

Scalability in production rate and cost are necessary 
to build next-generation experiments
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AdvACT SO CMB-S4

4

150 mm detector arrays

49

150 mm detector arrays

~500

150 mm detector arrays



Feedhorn Array Production

• Individually pattern silicon wafers with photolithography that 
you stack up to build the feedhorn profile

• Can create many feedhorn geometries

• Several weeks to produce a single array → Time and cost 
prohibitive for next-generation experiments
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S. M. Simon, et al., 2016



Direct-Machined Feedhorns

• Machine feedhorn profiles into metal with custom drill and 
reamer set

• ~5 arrays/week → ~1/20 cost
• Can be done commercially + in parallel

• Aluminum is cost-effective and easy to machine

• Validate with beam maps and laser 

metrology
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1.8 cm

G. Chesmore



We need advances in modeling as much 
as we need advances in technology!

• Developed an instrument sensitivity 
calculator to estimate noise

• Developing an end-to-end
instrument model

• Science forecasts

• Instrument design feedback

• Set requirements on systematic 

effects and calibration

• Build up analysis pipeline

• Interplay between sensitivity, 
systematics, and calibration is 
critically important
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SO SAT



Ideal Feedhorn Properties: Sensitivity vs. 
Systematics

02/09/23 Sara M. Simon 30

• Sensitivity: High beam coupling efficiency

• Systematic Effects: Maximal beam symmetry →
Asymmetry leads to temperature to polarization and        
E-mode to B-mode leakage

• Calibration: Beam calibration with 
planet observations and external 
calibrators reduces beam effects 
by at least ~10x



02/09/23 Sara M. Simon 31

Previous State of the Art

• Conical Feedhorns
• High coupling efficiency

• Poor beam symmetry

• Corrugated Feedhorns
• Difficult to fabricate

• Near ideal beam symmetry

• Low coupling efficiency

7 mm

5.15 mm

Aperture size

requirement 

for SO
90/150 GHz

ACTPol Feedhorn

Corrugated

Conical
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New State of the Art: Spline-Profiled Feedhorns

• Tunability between beam symmetry and efficiency

• Used on AdvACT: 27/39 GHz, 90/150 GHz, 150/230 GHz

• Increased AdvACT mapping speed by factor of ~1.8 at 
90/150 GHz compared to corrugated design

• Monotonically increasing profile →
enables direct machining and
high performance

S. M. Simon, et al., 2016



Optimized Performance
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Average Leakage Beams:

150 GHz Band

E→B 

Leakage

T→P 

Leakage

Polarized 

Beam

Circular 

Polarization 

Leakage

Estimated Power 

Spectra

Systematics acceptable 

with calibration→ Gain 

10% more sensitivity!

EE

BB



Need this level of rigor for every aspect 
of the project

• Instrument design decisions
• Do our instrument designs meet our requirements?

• What design changes are the most impactful?

• Calibration plan
• What are the calibration requirements?

• What calibration hardware can meet these requirements?

• How well do we have to understand our calibrators?

• How often do we have to calibrate throughout our science 
observations?
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Simons Observatory: Fielding in 2023 

Groundbreaking science

Laying groundwork for CMB-S4 and future CMB projects
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Developing technologies 

with improved 

performance that can be 

fabricated at scale

Developing tools for 

instrument modeling and 

analysis pipelines

Balance between 

sensitivity, systematic 

effects, and calibration



Survey Strategy
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10% sky 40% sky

SATs LAT

SO: 5 years of observation beginning in 2023

CMB-S4: Observation beginning ~2030

The Simons Observatory Collaboration, 2018



CMB-S4 Spectra
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The CMB-S4 Collaboration, 2016



Science Forecasts

Parameter Current 

Best

SO 

Baseline

CMB-S4 

Baseline

Method

𝜎(r) 0.03 0.003 0.0005 BB + ext delens

𝜎(Neff) 0.2 0.07 0.027 TT/TE/EE + 𝜅𝜅

𝜎(∑mν) 0.1 eV 0.04 eV 0.015 eV 𝜅𝜅 + DESI-BAO

𝜎(H0) 0.5 0.4 0.24 TT/TE/EE + 𝜅𝜅

𝜎(𝜎8) (%) 7% 2% 0.1% 𝜅𝜅 + LSST-LSS 

+ DESI-BAO
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The Simons Observatory Collaboration, 2018

The CMB-S4 Collaboration, 2016

Plus:

SO: 20,000+ galaxy clusters

CMB-S4: 100,000+ galaxy clusters



New Avenues: TolTEC

• High-resolution SZ camera for the Large 

Millimeter Telescope (LMT) in Mexico

• TolTEC has 5-10 arcsecond resolution and 

several advantages over X-ray

• Use CMB technologies (e.g. feedhorns)

• Handfuls to hundreds of high-resolution 

individual SZ cluster observations

• Resolve substructure → reduce uncertainties from 

astrophysical processes that limit cluster 

cosmology

• First light was in 2022

• TolTEC is a unique opportunity to open a new 

discovery space for cluster astrophysics and 

improve our understanding of dark energy and 

dark matter
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Summary

• The next generation of CMB observations are poised to 

make tremendous discoveries

• r : Observe gravity operating on quantum scales

• Neff : Probe for particles beyond the standard model

• ∑mν : Constrain the masses of neutrinos

• New insights into dark energy, dark matter, structure formation

• Simons Observatory, TolTEC, and CMB-S4 will be on 

the forefront of these next-generation observations

• Require advances in technology, production, and 

understanding our instruments
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