Precision Cosmology with the Cosmic Microwave Background

Sara M. Simon Fermilab February 9, 2023

Photo courtesy of Jon Ward

Overview

- Measurements of the cosmic microwave background (CMB) continue to reveal a wealth of information about our universe
- Improved measurements will expand our understanding of neutrinos, dark matter, dark energy, and cosmological models
- Future CMB projects will revolutionize the field, but require bold steps in instrumental development
 - Novel technology development: production and systematic control
 - An Example: Feedhorns
- Technologies developed for CMB experiments open new opportunities for scientific exploration

ACDM Cosmology

- Expanding, flat universe that began in a hot, dense state
- Dominated by dark energy and dark matter

 ACDM model describes our universe incredibly well... BUT it leaves many fundamental questions unanswered

- CMB can measure the energy scale of inflation (r)
 - One of the few ways to probe early universe ~10⁻³⁶ s after its beginning

- CMB can measure the energy scale of inflation (r)
 - One of the few ways to probe early universe ~10⁻³⁶ s after its beginning
- CMB measures the sum of the neutrino masses ($\sum m_v$)
 - Compliment to neutrino oscillation experiments that measure Δm_{ii}^2

- CMB can measure the energy scale of inflation (r)
 - One of the few ways to probe early universe ~10⁻³⁶ s after its beginning
- CMB measures the sum of the neutrino masses $(\sum m_v)$
 - Compliment to neutrino oscillation experiments that measure Δm_{ii}^2
- CMB measures the number of relativistic species (N_{eff})
 - Constrain/probe theories that predict new light particles

- CMB can measure the energy scale of inflation (r)
 - One of the few ways to probe early universe ~10⁻³⁶ s after its beginning
- CMB measures the sum of the neutrino masses ($\sum m_v$)
 - Compliment to neutrino oscillation experiments that measure Δm_{ii}^2
- CMB measures the number of relativistic species (N_{eff})
 - Constrain/probe theories that predict new light particles
- CMB constrains dark matter and dark energy through the growth of structure (σ_8), the expansion rate (H_0), and the amounts of dark matter and dark energy
 - Extremely accurate probe of these mysterious dark components
 - Highly complementary to supernovae and large-scale structure studies

CMB Temperature and Polarization Maps

Temperature and Polarization Power Spectra Maps of Lensing and Sources

Science

- Theories of the early universe (*r*)
- $\sum m_v$ and N_{eff}
- Contents and nature of dark matter and dark energy
- Formation and evolution of structure
- Information about astrophysical processes

02/09/23

Current State of the Field: CMB Instruments

Temperature Only

BOOMERanG -1998 DASI - 2000 WMAP - 2001 Atacama Cosmology Telescope (ACT) - 2007 SPT - 2007

Next Few Years: 60k+ detectors Simons Observatory (SO) - 2023

Added Polarization

QUaD - 2005 BICEP - 2006 QUIET - 2008 Planck - 2009 BICEP2 - 2010 Keck Array - 2010 ABS - 2012 ACTPol - 2013 POLARBEAR - 2012 SPT-Pol - 2012 BICEP 3 - 2015 SPIDER - 2015 Current Generation: <10k detectors CLASS - 2016 Advanced ACTPol (AdvACT) - 2017 SPT-3G - 2017 POLARBEAR 2 - 2019 Simons Array - 2019 BICEP Array - 2019/2020 SPIDER 2 - 2022 Next 10 Years CMB-S4 (~500k detectors) - ~2030 LiteBIRD - late 2020s

Current State of the Field-Temperature

CMB Lensing

- Photons from the CMB are gravitationally deflected by structure
- Can reconstruct maps of the dark matter distribution
- Lensing probes the growth of structure \rightarrow dark energy, $\sum m_v$
- Need improved temperature + polarization measurements on small angular scales across large areas of the sky

CMB Lensing

- Photons from the CMB are gravitationally deflected by structure
- Can reconstruct maps of the dark matter distribution
- Lensing probes the growth of structure \rightarrow dark energy, $\sum m_v$
- Need improved temperature + polarization measurements on small angular scales across large areas of the sky

Galaxy Clusters via the Sunyaev-Zel'dovich (SZ) Effect

- Photon energy boosted from scattering off high energy electrons in galaxy clusters via inverse Compton scattering
- Galaxy clusters are largest bound structures in the universe → mass profiles highly sensitive to effects of dark matter and dark energy on structure formation
 - Signal does not dim with distance → picture of evolution
 - Increased sensitivity to cluster outskirts → cluster astrophysics
- Cluster mass estimates are currently limited at the 5-10% level

Particles Beyond the Standard Model

$$\rho_{rad} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}\right] \rho_{\gamma}$$

Standard Model: $N_{eff} = 3.046$ Beyond the Standard Model: ΔN_{eff}

 $\Delta N_{eff} \geq 0.047~{
m Spin}\,rac{1}{2}$, 1, $rac{3}{2}$ $\Delta N_{eff} \geq 0.027~{
m Spin}\,0$

Planck (current): $\sigma(N_{eff}) \sim 0.2$ Simons Observatory: $\sigma(N_{eff}) \sim 0.07$ CMB-S4: $\sigma(N_{eff}) \sim 0.027$

Polarization in the CMB

U. Seljak and M. Zaldarriaga, 1997 M. Kamionkowski, A. Kosowsky, and A. Stebbins, 1997

Did a period of inflation occur in the early universe?

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

$$V(\phi)$$

$$V(\phi) >> \frac{1}{2} \left(\frac{d\phi}{dt}\right)^2$$
 Inflation
$$1 \left(\frac{d\phi}{dt}\right)^2$$

Inflation ends

Inflation offers several explanations

- Expansion yields nearly flat, homogeneous, isotropic universe
- Seeds density fluctuations
- Creates tensor perturbations (gravitational waves)
- B-modes are the cleanest channel to detect inflation \rightarrow quantify with tensor-to-scalar ratio *r*
- r directly measures energy scale of inflation
- Probe quantum gravity and fundamental physics ~10⁻³⁶ s after the universe began at grand unification theory energy scales (10¹⁶ GeV)

A.D. Linde, 1982 A. Albrecht and P.J. Steinhardt, 1982

Current State of the Field-Polarization

Small Angular Scales: Information about the formation of structure → neutrinos, dark energy, dark matter

Large Angular Scales: Constrain *r*, early universe theories

Measurement Challenges

- The amplitude of the B-mode signal is small (BICEP2/Keck Array r<0.06) → Need high sensitivity
- Polarized foreground contamination from synchrotron and dust emission → Need wide frequency coverage
- Fluctuations in the unpolarized atmosphere, especially on large angular scales (groundbased) → Need to lower atmospheric noise

The Simons Observatory Collaboration, 2018

Future Progress in CMB Science

- Progress is now driven by instrumental advancements
- Multichroic pixels \rightarrow increased sensitivity and frequency coverage
- Increased pixel count \rightarrow increased sensitivity
 - Increased number of pixels/array
 - Increased number of arrays
- Improved broadband optics → increased sensitivity and frequency coverage
- Polarization modulators \rightarrow lower atmospheric noise

Sensitivity Alone is Not Sufficient

- The science achievable with future experiments like SO and CMB-S4 will depend on how well we model and mitigate systematic effects and how well we calibrate our telescopes
 - Future experiments like SO and CMB-S4 will have unmatched sensitivity
 - As sensitivity increases, so does susceptibility to systematic effects
 - Need improved simulations of systematics → inform instrument design and removal in analysis
 - Need improved calibration → characterize instrument and remove these systematic effects

Simons Observatory

- Located at an elevation of ~5200 m in the Atacama Desert in Chile
- Multichroic cameras 27/39 GHz, 90/150 GHz, 220/280 GHz
- 60,000+ detectors total

Small Aperture Telescopes (SATs):

- Three ~0.5 m refractive telescopes
- Measure/constrain primordial B-mode

• Small angular scale science

LAT Optics

- 6 m Crossed-Dragone
- Beam full width at half maximum (FWHM) at 150 GHz is 1.4 arcmin
- 1.3° field of view (FOV) per optics tube
- 7.8° FOV total

SAT Optics

Polarization Modulation: Continuously-rotating Half-wave Plate (HWP)

Refractive design, 3 lenses
17 arcmin FWHM at 150 GHz
FOV=35°

• Atacama B-mode Search (ABS) pioneered HWPs for ground-based CMB experiments

 Polarization modulation mitigates atmospheric noise, systematic effects, and instrumental polarization leakage

 Can be used to calibrate and characterize instrument

Feedhorn-Coupled Arrays

• Feedhorn defines the detector beam

- Couples light onto the ortho-mode transducer (OMT)
- OMT splits light into two orthogonal polarizations

Detectors and Readout

- 4 detectors/pixel: 2 orthogonal polarizations for each of 2 bands
- Transition-edge sensors (TESs): use the steep superconducting-to-normal transition of a superconductor to make an extremely sensitive detector (~160 mK)
- Read out with μ MUX \rightarrow ~1000 detectors/line (vs ~64)

Production for Next-Generation Experiments

Scalability in production rate and cost are necessary to build next-generation experiments

Feedhorn Array Production

- Individually pattern silicon wafers with photolithography that you stack up to build the feedhorn profile
- Can create many feedhorn geometries
- Several weeks to produce a single array → Time and cost prohibitive for next-generation experiments

Direct-Machined Feedhorns

- Machine feedhorn profiles into metal with custom drill and reamer set
- ~5 arrays/week \rightarrow ~1/20 cost
 - Can be done commercially + in parallel
 - Aluminum is cost-effective and easy to machine

We need advances in modeling as much as we need advances in technology!

- Developed an instrument sensitivity calculator to estimate noise
- Developing an end-to-end instrument model
 - Science forecasts
 - Instrument design feedback
 - Set requirements on systematic effects and calibration
 - Build up analysis pipeline
- Interplay between sensitivity, systematics, and calibration is critically important

Ideal Feedhorn Properties: Sensitivity vs. Systematics

- Sensitivity: High beam coupling efficiency
- Systematic Effects: Maximal beam symmetry → Asymmetry leads to temperature to polarization and E-mode to B-mode leakage
- Calibration: Beam calibration with planet observations and external calibrators reduces beam effects by at least ~10x

Previous State of the Art

Conical Feedhorns

- High coupling efficiency
- Poor beam symmetry

Corrugated Feedhorns

- Difficult to fabricate
- Near ideal beam symmetry
- Low coupling efficiency

New State of the Art: Spline-Profiled Feedhorns

- Tunability between beam symmetry and efficiency
- Used on AdvACT: 27/39 GHz, 90/150 GHz, 150/230 GHz
- Increased AdvACT mapping speed by factor of ~1.8 at 90/150 GHz compared to corrugated design
- Monotonically increasing profile \rightarrow enables direct machining and high performance

02/09/23

Efficiency 32

Optimized Performance

Average Leakage Beams: 150 GHz Band

-0.00100

Estimated Power Spectra

with calibration \rightarrow Gain 10% more sensitivity!

Need this level of rigor for every aspect of the project

Instrument design decisions

- Do our instrument designs meet our requirements?
- What design changes are the most impactful?

Calibration plan

- What are the calibration requirements?
- What calibration hardware can meet these requirements?
- How well do we have to understand our calibrators?
- How often do we have to calibrate throughout our science observations?

Simons Observatory: Fielding in 2023 Groundbreaking science Laying groundwork for CMB-S4 and future CMB projects

Developing technologies with improved performance that can be fabricated at scale

Developing tools for instrument modeling and analysis pipelines

Balance between sensitivity, systematic effects, and calibration

Survey Strategy

SO: 5 years of observation beginning in 2023 CMB-S4: Observation beginning ~2030

SATs

LAT

10% sky

40% sky

The Simons Observatory Collaboration, 2018

CMB-S4 Spectra

The CMB-S4 Collaboration, 2016

Science Forecasts

Parameter	Current Best	SO Baseline	CMB-S4 Baseline	Method
$\sigma(r)$	0.03	0.003	0.0005	BB + ext delens
$\sigma(N_{eff})$	0.2	0.07	0.027	TT/TE/EE + $\kappa\kappa$
$\sigma(\sum m_v)$	0.1 eV	0.04 eV	0.015 eV	кк + DESI-BAO
$\sigma(H_0)$	0.5	0.4	0.24	TT/TE/EE + κκ
$\sigma(\sigma_8)$ (%)	7%	2%	0.1%	κκ + LSST-LSS + DESI-BAO

The Simons Observatory Collaboration, 2018 The CMB-S4 Collaboration, 2016

Plus: SO: 20,000+ galaxy clusters CMB-S4: 100,000+ galaxy clusters

New Avenues: ToITEC

- High-resolution SZ camera for the Large Millimeter Telescope (LMT) in Mexico
- ToITEC has 5-10 arcsecond resolution and several advantages over X-ray
- Use CMB technologies (e.g. feedhorns)
- Handfuls to hundreds of high-resolution individual SZ cluster observations
 - Resolve substructure → reduce uncertainties from astrophysical processes that limit cluster cosmology
- First light was in 2022
- ToITEC is a unique opportunity to open a new discovery space for cluster astrophysics and improve our understanding of dark energy and dark matter

Images courtesy of Grant Wilson

02/09/23

Summary

 The next generation of CMB observations are poised to make tremendous discoveries

- *r* : Observe gravity operating on quantum scales
- N_{eff} : Probe for particles beyond the standard model
- $\sum m_v$: Constrain the masses of neutrinos
- New insights into dark energy, dark matter, structure formation

 Simons Observatory, ToITEC, and CMB-S4 will be on the forefront of these next-generation observations

• Require advances in technology, production, and understanding our instruments