CMB and Fundamental Physics

Meir Shimon

May, 2009

Outline

- CMB polarization and inflation
- Neutrino masses and chemical potentials
- Cosmological Birefringence
- The SZ effect and neutrino masses
- The SZ effect as a means to measure T(z)

CMB Polarization and Inflation

E-Mode vs. B-mode Polarization

CMB Lensing by the LSS

B-mode generated by gravitational waves and 'contaminated' by gravitational lensing

Scalar vs. Tensor Perturbations

$$
\begin{aligned}
& A_{s}^{2}=\frac{V^{3}}{M_{P}^{6}\left(V^{\prime}\right)^{2}} \\
& A_{t}^{2}=\frac{V}{M_{P}^{4}}
\end{aligned}
$$

tensor - to - scalar ratio
model-independent
$\mathrm{r} \approx \mathrm{E}^{\wedge} 4 /\left[3.8 \times 10^{16} \mathrm{GeV}\right]^{4}$

Neutrino Masses and Chemical Potentials

- If neutrinos are relativistic at recombination they may imprint on the CMB temperature anisotropy through the Integrated Sachs Wolfe effect

$$
\frac{\Delta T}{T}=\int \frac{\partial \varphi}{\partial t} d l
$$

Damping at the Era of Structure Formation

Neutrino masses and Temperature Anisotropy

Neutrino Oscillations

$$
M_{e}^{2}=\sum_{i=1}^{3}\left|U_{e i}\right|^{2} M_{i}^{2}
$$

Solar neutrinos

$$
\begin{aligned}
& \delta m_{12}^{2} \equiv m_{1}^{2}-m_{2}^{2} \approx 8.0 \times 10^{-5} \mathrm{eV}^{2} \\
& \delta m_{23}^{2} \equiv m_{2}^{2}-m_{3}^{2} \approx 2.4 \times 10^{-3} \mathrm{eV}^{2}
\end{aligned}
$$

Atmospheric neutrinos

At least one neutrino is heavier than 0.05 eV

Lepton Asymmetry

$\mathrm{f}\left(p ; T_{V}, \xi_{V}\right)=\frac{1}{\exp \left(\frac{p}{T_{V}}+\xi_{v}\right)+1}$
$\xi_{v} \equiv \frac{\mu_{v}}{T_{v}}$
$\rho_{\nu}+\rho_{\bar{v}}=\frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4}\left[1+\frac{30}{7}\left(\frac{\zeta}{\pi}\right)^{2}+\frac{15}{7}\left(\frac{\zeta}{\pi}\right)^{4}\right]$
Riotto \& Kinney (1999),
Lesgourgues \& Pastor (1999)

Miller et al. (2009)

$$
L \equiv \sum_{v} \frac{n_{v}-n_{\bar{v}}}{n_{\gamma}}=\frac{1}{12 \varsigma(3)}\left[\sum_{v}\left(\xi^{3}+\pi^{2} \xi\right)\left(\frac{T_{v}^{0}}{T_{\gamma}^{0}}\right)^{3}\right]
$$

Flow Chart of BBN+CMB

Degeneracy Parameter: Impact on Power Spectra

2D Likelihoods for Planck

Limits on Neutrino Parameters from PLANCK

Cosmological Birefringence

primordial universe is
parity - even (?) $\rightarrow \mathrm{TB}=0=\mathrm{EB}$

Parity Violating Interactions

$$
L \propto E^{2}-B^{2} \rightarrow E^{2}-B^{2}+g \vec{E} \cdot \vec{B}
$$

These are the e.m. E and B, not to be confused with the E- and B-modes
$\omega^{2}=k^{2} \pm\left(4 \pi g_{\chi} \dot{\chi}\right) k$

The new term is charge - blind and parity violating : $\mathrm{E} \rightarrow \mathrm{E}$

$$
g \text { is } \chi, \phi ?
$$

B \rightarrow - B
Therefore by the CPT theorem needs violate time - reversal

Rotation of Polarization Plane

Rotation of the polarization plane \Rightarrow mixing Q and $\mathrm{U} \Rightarrow$

Beam systematics,
Miller et al. (2009)
converting $\mathrm{E} \rightarrow \mathrm{B} \Rightarrow$
inducing `forbidden' TB and EB

SZ Effect and Neutrino Masses

- CMB comptonization by galaxy clusters
- Independent of redshift
- Dominates the power spectrum on small scales

SZ Power Spectrum

SZ dominates

Neutrino Masses from Cluster Correlations and Number Counts

- SPT (10\% sky coverage) will set upper bound on total neutrino mass of 1.1 eV (from correlation function alone)
- Adding number counts tightens this limit to 0.72 eV
- DUO+ SPT+LSST+PLANCK will presumably constrain total mass down to 0.034 eV

SZ Power Spectrum with Massive Neutrinos

$$
\mathrm{f}_{v} \equiv \frac{\Omega_{v}}{\Omega_{M}}
$$

Sadeh, Shimon \& Rephaeli (2009), in prep.

Non-Standard CMB Temperature Scaling and the SZ Effect

$\Delta T_{S Z} / T_{\mathrm{CMB}}=\tau \theta_{e} F(x)$
τ is the optical depth

$$
\begin{aligned}
& \theta_{\mathrm{e}}=\mathrm{kT} \mathrm{e}_{\mathrm{e}} /\left(\mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}\right) \\
& \mathrm{x}=\mathrm{h} v /\left(\mathrm{kT}_{\mathrm{CMB}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S \propto N \propto V \cdot T^{3} \rightarrow \\
& T \cdot a=\text { const } . \rightarrow \\
& T(z)=T_{0}(1+z)
\end{aligned}
$$

- Non-standard evolution, i.e. non-adiabatic evolution, will result is departure from the standard scaling, e.g.

$$
T(z)=T_{0} \cdot(1+z)^{1-\alpha} \longrightarrow x=h v /(k T) \rightarrow x(1+z)^{\alpha}
$$

Fabbri, Melchiorri \& Natale (1978)
Rephaeli (1980)

- From a sample of 13 clusters

$$
\alpha \leq 0.10(68 \% \mathrm{CL})
$$ in prep.

- Forecasted upper limits for PLANCK and ACT

$$
\begin{aligned}
& \alpha_{\text {PLANCK }} \leq 0.0014(0.0027) \\
& \alpha_{\text {ACT }} \leq 0.0008(0.0067)
\end{aligned}
$$

Shimon \& Rephaeli (2009),
in prep.

Summary I

- Energy scale of inflation
- LSS probes: trace the LSS and neutrino masses + chemical potentials via the effect of neutrino diffusion
- Chemical potentials: rule out or constrain scenarios of Lepton Asymmetry?
- Cosmological Birefringence: constraining quintessence and axion models with CMB

Summary II

- SZ is likely to improve on neutrino mass constraints from standard number counts and correlation
- Non-standard temperature scaling can be constrained with SZ spectrum

Real-world effects (such as astrophysical foregrounds, beam systematics, etc.) may compromise this science and a considerable effort is being made to optimize our experiments: data-analysis techniques, foreground removal, beam systematics, etc, towards meeting the challenging requirements of B-mode detection and fine-scale anisotropy...

