CMB and Fundamental Physics

Meir Shimon

May, 2009

Outline

CMB polarization and inflation
Neutrino masses and chemical potentials
Cosmological Birefringence
The SZ effect and neutrino masses
The SZ effect as a means to measure T(z)

CMB Polarization and Inflation

E-Mode vs. B-mode Polarization

CMB Lensing by the LSS

B-mode generated by gravitational waves and 'contaminated' by gravitational lensing

Scalar vs. Tensor Perturbations

$$A_{s}^{2} = \frac{V^{3}}{M_{P}^{6}(V')^{2}}$$
$$A_{t}^{2} = \frac{V}{M_{P}^{4}}$$

model-dependent

$$\delta \rho = V'(\phi) \delta \phi$$

model-independent

tensor - to - scalar ratio $r \approx E^4/[3.8 \times 10^{16} \text{GeV}]^4$

Neutrino Masses and Chemical Potentials

 If neutrinos are relativistic at recombination they may imprint on the CMB temperature anisotropy through the Integrated Sachs Wolfe effect

$$\frac{\Delta T}{T} = \int \frac{\partial \varphi}{\partial t} \, dl$$

Damping at the Era of Structure Formation

Neutrino Oscillations

Lepton Asymmetry

Flow Chart of BBN+CMB

Degeneracy Parameter: Impact on Power Spectra

10

100

l

2D Likelihoods for Planck

Limits on Neutrino Parameters from PLANCK

Cosmological Birefringence

primordial universe is parity - even (?) \rightarrow TB=0=EB

Parity Violating Interactions

$$L \propto E^2 - B^2 \rightarrow E^2 - B^2 + g\vec{E} \cdot \vec{B}$$

These are the e.m. E and B, not to be confused with the E- and B-modes

Carroll, Field & Jackiw (1990)

$$\boldsymbol{\omega}^2 = k^2 \pm (4\pi g_{\chi} \dot{\boldsymbol{\chi}}) k$$

The new term is charge - blind and parity violating :

 $E \rightarrow E$

 $B \rightarrow -B$

Therefore by the CPT theorem needs

violate time - reversal

Rotation of Polarization Plane

Rotation of the polarization plane \Rightarrow mixing Q and U \Rightarrow converting E \rightarrow B \Rightarrow inducing `forbidden' TB and EB

Beam systematics, Miller et al. (2009)

SZ Effect and Neutrino Masses

CMB comptonization by galaxy clusters
Independent of redshift
Dominates the power spectrum on small scales

SZ Power Spectrum

Neutrino Masses from Cluster Correlations and Number Counts

- SPT (10% sky coverage) will set upper bound on total neutrino mass of
 - 1.1 eV (from correlation function alone)
- Adding number counts tightens this limit to 0.72 eV

 DUO+ SPT+LSST+PLANCK will presumably constrain total mass down to 0.034 eV

SZ Power Spectrum with Massive Neutrinos

Sadeh, Shimon & Rephaeli (2009), in prep.

Non-Standard CMB Temperature Scaling and the SZ Effect

 $\Delta T_{SZ} / T_{CMB} = \tau \theta_e F(x)$ τ is the optical depth $\theta_e = kT_e / (m_e c^2)$ $x = h \nu / (kT_{CMB})$

 $S \propto N \propto V \cdot T^3 \rightarrow$ $T \cdot a = const. \rightarrow$ $T(z) = T_0(1+z)$

$$T(z) = T_0 \cdot (1+z)^{1-\alpha} \longrightarrow x = h \nu / (kT) \longrightarrow x(1+z)^{\alpha}$$

Fabbri, Melchiorri & Natale (1978) Rephaeli (1980)

• From a sample of 13 clusters

 $\alpha \le 0.10 \,(68\% \, \text{CL})$

Luzzi et al. (2009), in prep.

Forecasted upper limits for PLANCK and ACT

 $\alpha_{\text{PLANCK}} \le 0.0014 \,(0.0027)$ $\alpha_{\text{ACT}} \le 0.0008 \,(0.0067)$

Shimon & Rephaeli (2009), in prep.

Summary I

- Energy scale of inflation
- LSS probes: trace the LSS and neutrino masses + chemical potentials via the effect of neutrino diffusion
- Chemical potentials: rule out or constrain scenarios of Lepton Asymmetry ?
- Cosmological Birefringence: constraining quintessence and axion models with CMB

Summary II

 SZ is likely to improve on neutrino mass constraints from standard number counts and correlation

 Non-standard temperature scaling can be constrained with SZ spectrum

Real-world effects (such as astrophysical foregrounds, beam systematics, etc.) may compromise this science and a considerable effort is being made to optimize our experiments: data-analysis techniques, foreground removal, beam systematics, etc, towards meeting the challenging requirements of B-mode detection and fine-scale anisotropy...