The Hubble tension and strong-lensing time-delays: Hint of new physics?

Anowar J. Shajib

Dissertation Year Fellow University of California, Los Angeles

Advisor: Tommaso Treu Collaborations: STRIDES and H0LiCOW

Hubble constant through the years

Collected by John Huchra

Recent debate over Hubble constant

Early-Universe H₀ measurement: CMB

Planck Collaboration (2013)

Late-Universe H₀ measurement: cosmic distance ladder

Riess et al. (2019), Image: https://www.photonicsspectra-digital.com

The "tension" becomes 5.3σ!

flat $\Lambda {\rm CDM}$

Wong,...,Shajib et al. (2019)

Time delay cosmography

- Past: Introduction and recent results
- **Present:** Current works in progress
- Future: Further improvements and forecasts

Time-delay Cosmography

Courtesy: Fred Courbin

Necessary data for time-delay distance measurement

Time delay distance:

Days

- Time delay measurement
- High resolution imaging of the lens
- Estimate of line-of-sight effects
- Kinematics

HOLICOW sample of 6 time-delay lenses

Suyu et al. (2010)

Rusu,..,Shajib et al. (2019)

1"

WFI2033

Suyu et al. (2014)

Birrer,..,Shajib et al. (2019)

Chen,..,Shajib et al. (2019)

Combining "blind" measurements from H0LiCOW: 2.4% precision in H₀

Time delay cosmography

- Past: Introduction and recent results
- Present: Current works in progress
- Future: Further improvements and forecasts

One new time-delay lens from the STRIDES collaboration

Independent analysis by 2 teams to check for systematics:

- Shajib et al. (UCLA) using "Lenstronomy"
- Yildirim et al. (MPA) using "GLEE"

Each lens requires coordinated effort by a large team.

- Lenstronomy lead developer: S. Birrer, KIPAC, Stanford
- Time-delays from COSMOGRAIL: Courbin et al. (2018)
- External convergence estimate: E. Buckley-Geer (Fermilab) and C. E. Rusu (NAOJ)
- Kinematics of the deflector: **H. Lin** (Fermilab)
- Nearby galaxy group detection: J. Poh, PhD student, (UChicago), H. Lin (Fermilab)

The most complex lensed quasar todate

- Nearby satellite (G2)
- Additional image (C2)
- Multiple sources (S2, S3)
- Line-of-sight perturbers (G3, G5)

Shajib et al. (2019c)

Multi-lens-plane lens modelling

Behind the scene of lens modeling

Data: 3-band

Reconstructed: multi-band

Reconstructed: single band

Mass

Marginalizing systematics in lens modelling

Shajib et al. (2019c)

H_0 from DES J0408-5354

- 3.9% precision from a single lens, highest to-date
- Consistent with the previous sample of 6-lenses

Preliminary combination of 7 lenses: 2% precision in H₀

Time delay cosmography

- Past: Introduction and recent results
- **Present:** Current works in progress
- Future: Further improvements and forecasts

Future goal is 1% H₀ measurement.

- Two Ways to improve precision
 - Increase sample size
 - Improve precision per system
- Thoroughly investigate to find unknown systematics

Approach 1: Increasing sample size

Data courtesy: Lens DB by Cameron Lemon

We have already discovered enough quasars to reach 1% in H_0 .

From HST Cycle 25

Shajib et al. 2019a

From HST Cycle 26

... and 15 more to be observed.

Approach 1: Automating the lens modeling

Shajib et al. 2019a

Approach 1: Automated lens models of 13 lenses

Approach 1: Automating the lens modelling

Shajib et al. 2019a

Approach 1: Future direction in automated lens modelling

- Machine learning for initializing lens models
 - Work of Vedant Sahu, UCLA undergraduate

Image from validation set

Detected quasar images and lensing galaxy

Approach 2: Improving Precision Per System

Spatially resolved kinematics

Spatially resolved kinematics improves precision on the mass profile slope.

Approach 2: Spatially resolved kinematics helps determine H_0 1% from a sample of 40 lenses.

Approach 2: Stellar kinematics from Keck/OSIRIS

Data

Integration time: 4 hours Target: 8 hours

Shajib et al. (in prep)

Tackling systematic: community data challenge

- To check for bias from different codes and modelers
- Simulated data with known, but hidden H₀ (Ding, Treu, Shajib et al.)
- 3 different levels with increasing complexity to understand the source of systematics, if any.
- Challenge finished recently, result to be announced soon

Tackling systematic: exploring more mass models with a novel method

• Elliptical mass profiles are analytically difficult for lensing.

deflection angle =
$$\int \text{surface density}$$

potential = $\int \text{deflection angle}$

• No general solution for three decades.

Shajib (2019b)

Tackling systematic: exploring more mass models with a novel method

- General and efficient
- Readily pluggable to Jeans anisotropic modeling of kinematics → unified lensing and kinematic analysis

Summary

- 7th time-delay lens gives most precise H_0 measurement at 3.9%
- Preliminary combination increases tension with early-Universe probes to \sim 5.7 σ
- Future directions:
 - Automated lens modelling for large samples
 - Spatially resolved kinematics to improve precision per lens
 - 1% H_0 measurement forecasted from ~40 lenses