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Dark energy 
Energy density, equation of state? 

Dark matter 
Interactions, temperature? 

 
Inflation 
Number of fields, interactions, 
energy scale?

The Universe as a fundamental Physics laboratory

Large-scale 
structure, SNe



Masses? Hierarchy? Dirac/Majorana? Additional sterile neutrinos? CP phase? 

Cosmology can weigh the neutrinos 
Neutrinos = 0.5% of all matter, but their gravity suppresses LSS 8-fold = 4% 

 

➞ CMB & LSS: masses to ~ 20 meV precision

Neutrinos

Massless 𝜈 Massive 𝜈
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Why now? LSS experiments are probing dark matter, dark 
energy, neutrinos & the Universe’s initial conditions

Vera Rubin Observatory LSSTDark Energy Spectroscopic Instrument
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Why care about baryons? Cosmology & Galaxy formation

Supernovae and supermassive black holes regulate galaxy formation 
Unknown feedback amplitude 
➞ Missing "baryon problem" 
 
How to analyze 1% precision LSS data when baryons (15% of matter) are missing?

Illustris



Light is a biased tracer of the mass

Illustris simulation explorer

Starlight



Illustris simulation explorer

Starlight, dark matter

Light is a biased tracer of the mass



Illustris simulation explorer

Starlight, dark matter, gas density

Light is a biased tracer of the mass



Illustris simulation explorer

Starlight, dark matter, gas density, temperature

Light is a biased tracer of the mass



Illustris simulation explorer

Starlight, dark matter, gas density, temperature, velocity

Light is a biased tracer of the mass



NASA, ESA, DePasquale, Wheatley, Levay: QSO absorption lines
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Initial conditions Scattering: 
Gas shadows
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Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫

dD
(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫

d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q ± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =

∫

d2L

(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫

d2l′

(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =

∫

d2l′

(2π)2

[

Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]

W (l′,L) ,

δB(l) =

∫

d2l′

(2π)2

[

B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]

W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect

Galaxies
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Summary of CMB secondaries
Key parameters:

Potential 
Lensing                                                             Total mass 
ISW, Rees-Sciama                                             DE, accretion rate 
Moving lens                                                      Transverse velocities 

Single scattering 
Screening                                                         Gas density 
kSZ, rot kSZ, turb kSZ                                      Gas density, LOS velocities 
tSZ, relat tSZ                                                    Gas thermal pressure, temperature   
Polarized scattering                                         Gas density, Ultra large scales  

Multiple scattering 
Smaller by factor                                               Break degeneracies with tau?

Z
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Why now? High-res high-sensitivity CMB experiments

The SO Site 

Simons Array

ACT

CLASS

SO-Nominal

භ 5,200 meters:  high and dry 
භ 23 degree South Latitude
භ Established site 
භ Room for expansion

26

12

Galaxies

CMB

Kirkby

SO Science goals and forecasts 19 
Lee+20



Growing interest in the CMB

Primary anisotropies Secondary anisotropies 



Outline: Combining CMB & LSS
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Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫

dD
(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫

d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q ± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =

∫

d2L

(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫

d2l′

(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =

∫

d2l′

(2π)2

[

Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]

W (l′,L) ,

δB(l) =

∫

d2l′

(2π)2

[

B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]

W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect

Mass shadows 
 
 CMB lensing noise bias avoidance 

Shen Schaan Ferraro 23

Bayesian lensing bias  
from polarized extragalactic foregrounds 
Qu Millea Schaan 24
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6 M. Haider et al.

(a) dark matter (b) baryons

Figure 3. Dark matter and baryon density in a thin slice at z = 0. The slice covers the whole (106.5 Mpc)2 extent of the simulation
and has a thickness of 104 kpc (1 cell).

Table 2. Dark matter mass, baryonic mass and volume fraction in haloes, filaments and voids at z=0. The categories have been defined
through dark matter density ranges. We also added a category ‘ejected material’ which corresponds to baryons inside the ‘voids’ region
which have a temperature T> 6 ⇥ 104 K. The spatial regions to which these dark matter density regions correspond to are shown in
Fig. 8.

dark matter density % of total % of total % of total % of total
component region (⇢crit) dark matter mass baryonic mass mass volume

haloes > 15 49.2 % 23.2 % 44.9 % 0.16 %
filaments 0.06 - 15 44.5 % 46.4 % 44.8 % 21.6 %
voids 0 - 0.06 6.4 % 30.4 % 10.4 % 78.2 %

ejected material
0 - 0.06 2.6 % 23.6 % 6.1 % 30.4 %

inside voids

baryons, this ‘ejected material’ region is responsible for most
of the baryons in dark matter voids. In Fig. 9, the spatial
region corresponding to the ejected material is plotted; note
that it fills about 40 % of the voids. We should note though,
that the ejected mass most likely heats some of the baryons
already present in the voids. Therefore, we have probably
overestimated the ejected mass in voids. However, through
following the redshift evolution of the mass in voids we can
give an estimate of the associate uncertainty, as we discuss
below. We note that our findings for the volume fractions
are generally in good agreement with simulations by Cau-
tun et al. (2014).

3.2.3 Redshift evolution of matter and metals in haloes,
filaments and voids

By applying the same dark matter density cuts at di↵erent
redshifts, we can study the time evolution of the values re-
ported in Table 2. This is done in Fig. 12, where we show
how the baryons and dark matter divide into haloes, fila-
ments and voids as a function of time. In Fig. 12 (a) we see
that, starting at redshift z = 2, feedback begins to e�ciently
remove gas from haloes. At first, this only slows down halo

growth, but after a redshift of z = 1, it reduces the amount
of baryons in haloes. In Fig. 12 (b) we see that the dark mat-
ter haloes, una↵ected by feedback, continue to grow at the
expense of the filaments. At high redshifts, the dark matter
was distributed homogeneously with a density of ⌦dm⇢crit,
and thus falls into the ‘filament’ category. The underdense
regions of the voids were only created as matter from less
dense regions was pulled into denser regions. Thus the frac-
tion of dark matter in voids is increasing from z = 6 to 2.
After z = 2, the amount of dark matter in voids is slowly de-
creasing due to accretion on to filaments. The baryons show
a similar behaviour from z = 6 to 2. However, starting at
a redshift of z = 2 ejected material is also transported into
the voids, thus increasing their baryonic content. We see in
Fig. 12 (a) that the mass increase of the ‘ejected material’
is higher than the mass increase of the ‘voids’. The most
likely explanation is that the ejected mass heats gas already
present in the voids, which means that we overestimate the
mass of the ejected material with our density and tempera-
ture cut. If we assume that in the absence of feedback the
baryons would show the same relative decrease from z = 2
to 0 as the dark matter, we would need to correct the value
of the ejected material down to 20 %.

MNRAS 457, 3024-3035 (2016)
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dark matter gas (with feedback)
Haider+16, Illustris simulation
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Figure 3. The ratio of tomographic shear power spectra of di↵er-
ent hydrodynamical simulations with respect to their counterpart
DMO simulations for the lowest auto-correlation tomography bin
with the cosmology set at the Planck 2015 result (Table 2). The
thick lines represent the cases for Eagle/MB2/Illustris/Horizon-
AGN simulations, while the thin lines indicate the 9 di↵erent
baryonic scenarios in OWLS simulation suit.

drodynamical and DMO simulations are less severe. Sem-
boloni et al. (2011) showed that a scale cut of `max ⇡ 500
would be needed to avoid w0 bias for a Euclid-like survey if
the baryonic scenario of our Universe is like OWLS-AGN.
When applying the traditional way of mitigating baryonic
uncertainty by omitting small scale information, we would
need to discard a considerable amount of data before we can
rely on DMO-based theoretical model to achieve an unbiased
cosmological inference.

One subtle feature shown in Fig. 3 is that there is a
small but noticeable large-scale excess of power (< 0.4%)
in the Horizon-AGN simulation. This is because the power
spectrum ratio between hydrodynamical and DMO runs of
Horizon-AGN has < 0.1% excess at large scales (see Fig. 1),
even though they share the same initial conditions. The true
cause of this subtle excess is not clear. After exploring, Chis-
ari et al. (2018) concluded that this may originate from the
box being too small to reach the linear regime at large scales.
However, the other simulations studied here are similar in
size and do not exhibit this feature.

3.3 Covariance Matrix

We generate the analytical covariance matrix of tomographic
shear power spectra using CosmoLike (Eifler et al. 2014;
Krause & Eifler 2017). Briefly, our covariance matrix con-
tains both Gaussian and non-Gaussian parts. The Gaussian
covariance matrix contains contributions from cosmic vari-
ance and shape noise, derived under the assumption that
the 4pt-function of the shear field can be expressed in terms
of 2pt-functions (Hu & Jain 2004; Takada & Bridle 2007).

The non-Gaussian part is given by the convergence trispec-
trum derived using the halo model (Cooray & Sheth 2002),
which contains one-, two-, three-, and four-halo terms and
a halo sample variance term characterizing the scatter of
halo number density due to large-scale density fluctuations
(Cooray & Hu 2001; Takada & Jain 2009; Sato et al. 2009).
The exact equations of our implementation can be found in
the appendix of Krause & Eifler (2017).

We assume 18,000 deg2 as the survey area in our co-
variance matrix and adopt the same redshift distribution
and source galaxy number density (26/arcmin2) as depicted
in Fig. 2. The shape noise is set to be �✏ = 0.26 in each
ellipticity component.

3.4 Likelihood Formalism

Given a data vector D (at some fiducial cosmology and with
baryonic e↵ects from Eagle/MB2/Illustris/Horizon-AGN),
one can infer the corresponding posterior probability dis-
tribution of cosmological parameters pco and potential nui-
sance parameters pnu via Bayes’ theorem:

P(pco, pnu |D) / L(D |pco, pnu)Pr (pco, pnu) , (5)

where Pr (pco, pnu) denotes the prior probability distribution
and L(D |pco, pnu) is the likelihood. In this work, we assume
a Gaussian likelihood function for the observables,

L(D |pco, pnu) / exp
✓
�1

2

h
(D � M)t C�1 (D � M)

i
|                            {z                            }

�2(pco,pnu)

◆
. (6)

We further assume that the covariance C is constant in pa-
rameter space for simplicity (but see Eifler et al. 2009; Morri-
son & Schneider 2013 for likelihood analysis with cosmology-
dependent covariance matrix). As described in §3.1, the
model vector M may be derived based on Halofit which
is a pure function of cosmology M = M(pco), or it can be
a function of some nuisance parameters M = M(pco, pnu) as
well, with factors that are known to a↵ect D absorbed in
pnu. For example, in HMcode, we have A and ⌘0 acting as
nuisance parameters to account for the baryonic e↵ects (see
§3.1 for details). The final posterior distribution on cosmo-
logical parameters then can be derived by marginalizing over
all other nuisance parameters in the model

P(pco |D) /
π

dpnu P(pco, pnu |D) . (7)

We use the python emcee package (Foreman-Mackey
et al. 2013), which relies on the algorithm of Goodman
et al. (2010) to sample the parameter space spanned by pco
({⌦m, �8, ⌦b, ns, w0, wa, h0}) as well as pnu (if needed de-
pending on the model). Altogether, we have conducted ⇠250
likelihood simulations to present the results for this paper.
The MCMC (Markov Chain Monte Carlo) chains contain
⇠ 200000 to 400000 MCMC steps (after discarding 100000
steps as burn-in phase), depending on the dimension of the
parameter space which ranges from 7⇠16. For simplicity, we
assume flat priors for all of our parameters, with their mini-
mum and maximum values summarized in Table 2. For like-
lihood simulations with informative priors based on Planck,
we refer readers to E15. Informative priors help to better
constrain ns, ⌦b, and h, to which cosmic shear is not very
sensitive.

MNRAS 000, 1–30 (2018)
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Cooling

Gas expelled

Emmanuel Schaan

Galaxy formation 
Feedback pushes gas outside virial radius 
Too faint to detect 
→ Missing baryon problem 
→ Limits our understanding of galaxy 
formation 

Cosmology 
Baryons ~15% total matter 
→ Largest (30%) theoretical uncertainty 
on matter power spectrum 
→ Limits cosmology from weak lensing: 
Rubin, Roman, Euclid

Missing baryon “opportunity”: Cosmology & Galaxy formation



CMB can help: Sunyaev-Zel’dovich effects

Thermal SZ: Doppler from thermal motions 
tSZ = gas density * temperature 

Kinematic SZ: Doppler from bulk motion 
kSZ = gas density * bulk velocity 

Patchy screening: Doppler Simple scattering 
kSZ = gas density * primary CMB

➞ Unique probe of missing baryons! 
(Looking forward to FRBs too!)

Mroczkowski+19



Stacking analysis: progressively adding galaxies

1

Extracting tSZ: single galaxy

SNR per galaxy is too low to detect!

Schaan Ferraro+20



Extracting tSZ: 400,000 galaxies

Extended tSZ profile is well resolved!

Schaan Ferraro+20



Higher precision tSZ: ACTxDESI
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Higher precision tSZ: ACTxDESI

Simone 
Ferraro

High precision stacked tSZ 
Significant dust bias 
Clean by masking/deprojecting with variable 
dust SED

Emmanuel 
Schaan

Henry 
Liu
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Foreground dust emissions and 
deprojection of the CIB

• Dust emissions can 
drastically affect our 
signal near the galactic 
centre.
• Positive emissions from 

dust in temperature maps 
show as negative in the !-
parameter maps.

• Same as previous work 
from BOSS

• We need to deal with the 
dust!

• Several Ways…

Fiducial Y map CIB Deprojected

Liu+24



CMB can help: Sunyaev-Zel’dovich effects

Thermal SZ: Doppler from thermal motions 
tSZ = gas density * temperature 

Kinematic SZ: Doppler from bulk motion 
kSZ = gas density * bulk velocity 

Patchy screening: Doppler Simple scattering 
kSZ = gas density * primary CMB

Mroczkowski+19

➞ Unique probe of missing baryons! 
(Looking forward to FRBs too!)



Extracting kSZ: Velocity reconstruction

Eisenstein+07, Padmanabhan+12,14

A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.
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our implementation in subsequent subsections.
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correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.
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Velocity reconstruction via continuity equation: assessment
Bernardita 

Ried Guachalla
Boryana 

Hadzhiyska
Simone 
Ferraro

Key results 
-  Reconstruct halo (not galaxy) velocities 
→ good for kSZ! 

-  Photo samples extremely powerful  
(DESI LS, DES, HSC, LSST)  

-  Naïve hybrid photo-spectro reconstruction 
worse than photo-only 

Assess impact of  
-  satellite fraction 

-  number density 

-  smoothing 

-  cosmology

Hadzhiyska+23, Ried Guachalla+23
Emmanuel 

Schaan
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FIG. 3: 2D histograms of reconstructed VS true galaxy
velocities along the LOS for the fiducial AbacusSummit
box. The distributions show a nearly-Gaussian core with
positive correlation (center yellow ellipse), and tails at
larger velocities where the correlation is null or even neg-
ative. These tails are due to nonlinear motion, including
virial motion, which also cause unmodeled redshift-space
distortions (fingers of god). As expected, this tail is more
important for satellites (bottom) than centrals (middle);
the overall galaxy sample (top) being simply a mixture of
the two. See App. A for the velocity components across
the LOS.

Thus the signal-to-noise ratio (SNR) is simply pro-
portional to the correlation coe�cient, multiplied by the
square root of the number of galaxies:

SNR / r
p

Ngal. (12)

As a result, the correlation coe�cient r is the actual fig-
ure of merit for the velocity reconstruction, which we
seek to maximize. Furthermore, a lower quality velocity
reconstruction (i.e., lower r), can visibly be compensated
by a larger sample size to yield the same kSZ SNR.
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FIG. 4: For the purpose of kSZ or moving lens stack-
ing, the velocities we are actually trying to reconstruct
are those of the halos (this figure), rather than those of
the individual galaxies (Fig. 3). Fortunately, the recon-
structed velocities are closer to the halo velocities than
the galaxy velocities, since they are less a↵ected by the
non-linear evolution of the matter density field and the
Finger-of-God e↵ects. See App. A for the component
across the LOS.

For the fiducial values of our cosmological parameters,
DESI LRG galaxy sample and smoothing scale from Ta-
ble. I, we find:

(
�
k,?
vgal true

= 369 km/s

�
k,?
vrec

= 201 km/s
. (13)

In agreement with Fig. 2, the linear approximation and
the smoothing scale result in reconstructed speeds lower
than the truth. Interestingly, the RMS reconstructed
velocity is the same along and across the LOS, suggesting
that the Kaiser RSD is properly accounted for in our
analysis, and that the FoG RSD displacements are mostly
below our smoothing scale.

E. Reconstructing halo rather than galaxy
velocities

For kSZ measurements, the peculiar velocity we seek
to estimate is that of the gaseous halo; for moving lens,
it is the total halo velocity (dark matter plus gas). As
a result, the performance metrics above should really be
applied to compare the reconstructed velocities to the
true halo velocities, not the true galaxy velocities. This
distinction is significant, as shown in Figs. 3 and 4.

The orbital motion of satellite galaxies within halos
lead to large virial speeds. Indeed, Fig. 3 shows that
the galaxy velocities are much better reconstructed for
the centrals (middle panel, r = 0.67) than the satellites
(bottom panel, r = 0.12). This is expected due to the
highly nonlinear virial motion of satellites, which is not
accounted for in our linear reconstruction. In the satel-
lite population, the LOS reconstruction estimate has the
wrong sign more often than for centrals. We interpret
this as galaxies whose virial LOS velocity is high and
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FIG. 3: 2D histograms of reconstructed VS true galaxy
velocities along the LOS for the fiducial AbacusSummit
box. The distributions show a nearly-Gaussian core with
positive correlation (center yellow ellipse), and tails at
larger velocities where the correlation is null or even neg-
ative. These tails are due to nonlinear motion, including
virial motion, which also cause unmodeled redshift-space
distortions (fingers of god). As expected, this tail is more
important for satellites (bottom) than centrals (middle);
the overall galaxy sample (top) being simply a mixture of
the two. See App. A for the velocity components across
the LOS.

Thus the signal-to-noise ratio (SNR) is simply pro-
portional to the correlation coe�cient, multiplied by the
square root of the number of galaxies:

SNR / r
p

Ngal. (12)

As a result, the correlation coe�cient r is the actual fig-
ure of merit for the velocity reconstruction, which we
seek to maximize. Furthermore, a lower quality velocity
reconstruction (i.e., lower r), can visibly be compensated
by a larger sample size to yield the same kSZ SNR.
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FIG. 4: For the purpose of kSZ or moving lens stack-
ing, the velocities we are actually trying to reconstruct
are those of the halos (this figure), rather than those of
the individual galaxies (Fig. 3). Fortunately, the recon-
structed velocities are closer to the halo velocities than
the galaxy velocities, since they are less a↵ected by the
non-linear evolution of the matter density field and the
Finger-of-God e↵ects. See App. A for the component
across the LOS.

For the fiducial values of our cosmological parameters,
DESI LRG galaxy sample and smoothing scale from Ta-
ble. I, we find:

(
�
k,?
vgal true

= 369 km/s

�
k,?
vrec

= 201 km/s
. (13)

In agreement with Fig. 2, the linear approximation and
the smoothing scale result in reconstructed speeds lower
than the truth. Interestingly, the RMS reconstructed
velocity is the same along and across the LOS, suggesting
that the Kaiser RSD is properly accounted for in our
analysis, and that the FoG RSD displacements are mostly
below our smoothing scale.

E. Reconstructing halo rather than galaxy
velocities

For kSZ measurements, the peculiar velocity we seek
to estimate is that of the gaseous halo; for moving lens,
it is the total halo velocity (dark matter plus gas). As
a result, the performance metrics above should really be
applied to compare the reconstructed velocities to the
true halo velocities, not the true galaxy velocities. This
distinction is significant, as shown in Figs. 3 and 4.

The orbital motion of satellite galaxies within halos
lead to large virial speeds. Indeed, Fig. 3 shows that
the galaxy velocities are much better reconstructed for
the centrals (middle panel, r = 0.67) than the satellites
(bottom panel, r = 0.12). This is expected due to the
highly nonlinear virial motion of satellites, which is not
accounted for in our linear reconstruction. In the satel-
lite population, the LOS reconstruction estimate has the
wrong sign more often than for centrals. We interpret
this as galaxies whose virial LOS velocity is high and



Higher precision measurements: ACTxDESI

Ried Guachalla



Higher precision kSZ: ACTxDESI

Bernardita 
Ried Guachalla

Boryana 
Hadzhiyska

Simone 
Ferraro

High precision stacked kSZ 
Compare photo & spectro samples 
Explore dependence on M, z, L 
Confirm gas more extended than DM 
Matches Illustris (large feedback),  
not Illustris TNG 
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Aren't CMB experiments too low resolution?

Virial radius of galaxy groups ~ 1', and gas extends several Rvir 
→ Well matched to CMB data! 

kSZ unique probe of outskirts of galaxy groups and clusters 
→ Complementary with X-ray & tSZ, which probe cluster centers best

Ried Guachalla+25
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FIG. 7: For visualization purposes: stacked cutout of the
CMB map centered at the galaxy positions and weighted
by the reconstructed velocities (Eq. 8), without applying
the CAP filter. The traced gas density extends radially
much more than the beam FWHM (1.6 arcmin, diameter
of the inner black circle) and the halo virial radius (0.56
Mpc/h radius of the outer black circle, corresponding to
→1.2 arcmin).

A. Fiducial case: full DESI LRG Y1 sample

In Fig. 7, we show the stacked 2D map made by
applying Eq. 8 to the cutout around each DESI galaxy,
which gives information on the gas density. Similar to
[25], we find that the gas is primarily distributed within a
radius of approximately 3.5 Mpc. For an e!ective median
redshift of Med(z) ↑ 0.8, this corresponds to an angular
size of less than →6 arcminutes. The extent of the signal
is evident: the inner and outer black circles represent the
FWHM beam (1.6 arcmin) and virial radius (0.56 Mpc/h,
calculated using log(Mh/M→) → 13.24 [108]), showing
that the kSZ signal detected spans much larger radii.

In Fig. 8, we present the mean stacked kSZ CAP profile
(brown error bars) in µK arcmin2 with covariance matrix
shown in Fig. 18. Larger CAP filters are highly correlated
and no new information is acquired when increasing the
CAP apertures to R = 5 arcmin. Additionally, we
converted the kSZ temperatures into integrated optical
depth to Thomson scattering in the right vertical axis
as ωCAP = TkSZ/TCMB · c/ε

rec
v . We evaluate the

signal-to-noise ratio as in Eq. 10. We use the Illustris
z = 0.5 curve as the reference “model” for the S/N ,
leading to S/N = 9.8.
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FIG. 8: The measured stacked kSZ in µK arcmin2 for
varying CAP filters with radius R from Eq. 8 in brown.
We include the corresponding comoving distances at
z = 0.8 on the top horizontal axis. Several simulation
CAP profiles are included, each rescaled in amplitude to
match the measured signal at the largest aperture where
all the baryons should be encompassed (upper panel), or
with the amplitude left free to facilitate a comparison of
their shapes in the presence of mass mismatch between
data and simulation (lower panel). For the IllustrisTNG
case (solid blue, labeled TNG in the figure), the profile
shape more closely follows that of dark matter than
the observed data. For Illustris (light blue dashed) at
z = 0.8, the profiles tend to align more closely with the
observations. In contrast, when comparing the Illustris
profile at z = 0.5 (light green dashed), taken from [42],
we find a better match with the shape of the kSZ profile.
The bands on the lower panel propagate the uncertainty
on the profile amplitude from Eq. 15. The vertical gray
line shows the virial radius added in quadrature with
the beam standard deviation (FWHM/

√
8 ln(2)) and the

secondary axis on the right translates to the integrated
optical depth of Thomson scattering.

B. Simulation predictions: Illustris and Illustris
TNG

We compare our results with simulations following the
methodology outlined in [42]. This is possible because
our spectroscopic LRG galaxies are selected based on
their photometric counterparts. The spectroscopic LRG



Latest stacked kSZ profiles available?
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FIG. 14: Comparison between the kSZ stacked CAP profiles obtained when using the di!erent galaxy samples from
DESI Y1: BGS (in purple) and ELG (in blue), both compared to the LRG main result. In the left panel, we plot
the profiles as a function of the proper distance using the mean redshift of each sample, while for the right panel,
we use the observed angular scale. Within the noise, the observed BGS profile shows both a shape and amplitude
consistent with the LRG profile. One would have naïvely expected the BGS sample to have a smaller kSZ amplitude
and di!erent gas profile, since they are typically hosted by lower mass halos. However, our kSZ measurement includes
only the brighter subset of BGS galaxies used in the DESI Y1 BAO reconstruction, leading to a higher mean mass
compared to the full sample (see [82] for more details). The ELG sample, which includes a significant fraction of
satellite galaxies, exhibits two main combined e!ects: a more extended profile due to satellite contamination and
larger uncertainties arising from the virial motions of the satellite galaxies.

division between these galaxies and the LRG sample
mainly relies on the fact that BGS probe the epoch
when dark energy becomes dominant; however, the BGS
sample contains a wide range of galaxy types. The
second one is the Emissison-Line Galaxy sample (ELG),
which are OII emission-line galaxies that are generally
active star-forming galaxies and are less clustered than
the LRG ones [145]. This sample consists of 1,000,998
galaxies spanning a large redshift range of 0.8 → z → 1.6.
Both redshift distributions are shown in Fig. 1 of [82].
We use the velocity correlation coe"cients r from [84]:
rBGS = 0.64 and rELG = 0.55. Similar to our approach
for the LRG, we use the BAO displacements and convert
them into velocities, as explained in Sec. IVA. We leave
a detailed modeling of these profiles to future work.

Retaining the same model as for our LRG kSZ
measurement (Illustris gas profiles at z = 0.5), we
obtain S/N = 2.3 and 2.1 for ELG and BGS galaxies,
respectively. Fitting these measurements with a more
accurate model would lead to a higher S/N , and we
leave that task to a future work as it would require
an exploration of the BGS and ELG population in
simulations.

In Fig. 14, we show both CAP profiles of BGS and
ELG next to the more precise measurement from the
LRG sample. To highlight the di!erences between the
profiles, and their physical extension, we plot them as a
function of proper distance and their observed angular
scale. We find that the amplitude of the kSZ profiles for
LRG and BGS galaxies appear to match, similar to what

was found in [146] with the photometric samples. One
would expect BGS galaxies to have a lower mean host
halo mass [144], and therefore, a lower amplitude on their
kSZ profile. The DESI BGS Y1 sample, however, has
been restricted to include only lower-magnitude objects
[82]. This magnitude cut significantly reduces the total
number of galaxies (by approximately 90%) and likely
increases the mean host halo mass, bringing it into closer
agreement with that of the LRG. Indeed, the stellar mass
estimate from photometry corresponds to ↑ 3 · 1011M→,
close to the one find for our sample (2.2 · 1011M→). For
the ELG sample, the measured gas profile appears more
extended compared to that of the LRG sample. This
can be attributed to the larger fraction of satellites in
the ELG sample, as compared to the LRG sample, when
using the same halo-finding method (e.g., [108, 147]). As
shown in [42, 64], a large satellite fraction a!ects the
shape and amplitude of the kSZ profiles, as some gaseous
halos may be double-counted and miscentered. And
therefore, the 2D profiles tend to be observed distorted
and extended. Additionally, the mean host halo mass
of the ELG di!ers from that of the LRG (the HOD
analysis from [108, 147] estimates M

ELG

halo
↑ 1012M→/h

and M
LRG

halo
↑ 1013M→/h, respectively).

F. Consistency with photometric kSZ

Photometric surveys allow us to create large
galaxy catalogs, but they have the drawback of

DESI LRG, BGS, ELG 
spectro: Ried Guachalla+25 
photo: Hadzhiyska+25
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FIG. 10: Fractional amplitudes of the stacked kSZ
profiles for di!erent variables and their corresponding
bins (from Figs. 11, 12 and 13) with respect to the
fiducial one from Fig. 8. Upper panel: For higher redshift,
we find no trend on kSZ signals compared to our large
error bars. Central panel: The highest mass bin has an
amplitude → 3 times larger than the one observed in the
whole fiducial analysis. This result matches the mass
dependence [42] found when also using LRG galaxies.
Bottom panel: We examine three optical bands: z, r,
and g, matched with their respective associated colors.
In all of the absolute magnitude cases, the less luminous
a galaxy is, the smaller the measured amplitude of TkSZ,
as shown by the weighted least squares fit (dashed lines)
and their negative slopes.
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FIG. 11: Mean stacked kSZ profiles for the di!erent
redshift bins. There is no clear trend of the profiles,
confirming the results obtained by [42]. Additionally,
the number of galaxies in the redshift bins is not evenly
distributed: z4 reports the lowest S/N = 2.3 with 96,346
galaxies, which e.g. corresponds to only → 1/3 of the
galaxies of bin z2.
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For mass4, there is a clear increment on the amplitude,
similar to what [42] found. At larger scales, the errors
are wider and more correlated, thus the data at large
R provides little new information beyond that from the
smaller scales.

Finally, we acknowledge that additional factors could
be causing a time evolution other than the evolution of
feedback: for example, the galaxy selection function is
certainly changing with redshift. This will need to be
explored in future work.
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In all of the absolute magnitude cases, the less luminous
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as shown by the weighted least squares fit (dashed lines)
and their negative slopes.
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For mass4, there is a clear increment on the amplitude,
similar to what [42] found. At larger scales, the errors
are wider and more correlated, thus the data at large
R provides little new information beyond that from the
smaller scales.

Finally, we acknowledge that additional factors could
be causing a time evolution other than the evolution of
feedback: for example, the galaxy selection function is
certainly changing with redshift. This will need to be
explored in future work.

13

0.5 0.6 0.7 0.8 0.9 1.0
hzi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

kS
Z
(z

)/
kS

Z
fi
d

z1

z2

z3

z4

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Mean stellar mass (hM�/M�i) �1011

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

kS
Z
(m
a
s
s
)/

kS
Z

fi
d

� M�/hM�iDESI Y1

mass1 mass2 mass3 mass4

�24.5 �24.0 �23.5 �23.0 �22.5 �22.0 �21.5
Absolute magnitude (hMi)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

kS
Z
(M
a
g
)/

kS
Z

fi
d

Mag-z1

Mag-z2

Mag-z3

Mag-z4

Mag-r1

Mag-r2

Mag-r3

Mag-r4

Mag-g1

Mag-g2

Mag-g3

Mag-g4

FIG. 10: Fractional amplitudes of the stacked kSZ
profiles for di!erent variables and their corresponding
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we find no trend on kSZ signals compared to our large
error bars. Central panel: The highest mass bin has an
amplitude → 3 times larger than the one observed in the
whole fiducial analysis. This result matches the mass
dependence [42] found when also using LRG galaxies.
Bottom panel: We examine three optical bands: z, r,
and g, matched with their respective associated colors.
In all of the absolute magnitude cases, the less luminous
a galaxy is, the smaller the measured amplitude of TkSZ,
as shown by the weighted least squares fit (dashed lines)
and their negative slopes.
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For mass4, there is a clear increment on the amplitude,
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are wider and more correlated, thus the data at large
R provides little new information beyond that from the
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Finally, we acknowledge that additional factors could
be causing a time evolution other than the evolution of
feedback: for example, the galaxy selection function is
certainly changing with redshift. This will need to be
explored in future work.
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Large-scale noise: profile slope VS Mgas

Primary CMB (~degree) dominates noise  
on larger scales 

→ kSZ measures profile shape/slope better 
than its integral (Mgas)
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FIG. 17: 2D histogram in logarithmic scale of the
reconstructed velocity along the LOS across redshift. In
black, we plot the mean velocity per horizontal redshift
bin, finding a positive and negative tendency for the lower
and higher bounds respectively. The horizontal white
lines indicate the boundaries where the mean peculiar
velocity is zero.

The covariance matrix of the fiducial kSZ measurement
of this work is shown in Fig. 18. The small scales are
uncorrelated as the uncertainty is mainly coming from
the CMB map noise. However, larger scales start to be
correlated as the CMB primary anisotropies start to be
relevant. Due to this, and following [25, 42], we set the
maximum aperture to 6 arcmin. All of our covariance
matrices look similar to the one shown here.

3. Best-fit ratio between two kSZ profiles

Consider a data profile, denoted by the vector ωd, and
the fiducial curve from Fig. 8 (represented by the vector
ωm) as our reference model. We then define an amplitude
A such that these quantities are related by:

ωd = A · ωm + ωn, (12)
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FIG. 18: Correlation coe!cient covariance matrix
between the di"erent CAP filter radius for the kSZ
fiducial measurement. The correlation is stronger on
large scales, as the fluctuations of the primary CMB
become dominant, characteristic in all kSZ measurements
of this work.

where ωn the noise. The corresponding likelihood with
independent noise is

ln L(A) = →1

2
[ωd → A · ωm]→C↑1[ωd → A · ωm]. (13)

The amplitude best-fit is

Â =
ωm

→C↑1 ωd

ωm→C↑1 ωm
, (14)

and its noise estimate is

εA = [ωm(ωϑ)→C↑1
ωm(ωϑ)]↑1/2

. (15)

4. Systematic checks/Null tests

To validate our measurement and show that correlated
contaminants, such as the cosmic infrared background or
tSZ, are not impacting our result, we do the two following
systematic checks.

First, we randomly shu#e the reconstructed velocities
of our galaxies and obtain 1000 realizations. This would
guarantee that we are indeed obtaining a measurement
from kSZ that includes enough galaxies, such that
the positive and negative weighting from the velocities
cancels out other secondary anisotropies. We stacked on
these shu#ed velocities and find no signal, as shown in
the upper panel of Fig. 19. This means that the tSZ and
CIB e"ects did not bias our measurement and that the
CMB map used is accurately separated.
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FIG. 7: For visualization purposes: stacked cutout of the
CMB map centered at the galaxy positions and weighted
by the reconstructed velocities (Eq. 8), without applying
the CAP filter. The traced gas density extends radially
much more than the beam FWHM (1.6 arcmin, diameter
of the inner black circle) and the halo virial radius (0.56
Mpc/h radius of the outer black circle, corresponding to
→1.2 arcmin).

A. Fiducial case: full DESI LRG Y1 sample

In Fig. 7, we show the stacked 2D map made by
applying Eq. 8 to the cutout around each DESI galaxy,
which gives information on the gas density. Similar to
[25], we find that the gas is primarily distributed within a
radius of approximately 3.5 Mpc. For an e!ective median
redshift of Med(z) ↑ 0.8, this corresponds to an angular
size of less than →6 arcminutes. The extent of the signal
is evident: the inner and outer black circles represent the
FWHM beam (1.6 arcmin) and virial radius (0.56 Mpc/h,
calculated using log(Mh/M→) → 13.24 [108]), showing
that the kSZ signal detected spans much larger radii.

In Fig. 8, we present the mean stacked kSZ CAP profile
(brown error bars) in µK arcmin2 with covariance matrix
shown in Fig. 18. Larger CAP filters are highly correlated
and no new information is acquired when increasing the
CAP apertures to R = 5 arcmin. Additionally, we
converted the kSZ temperatures into integrated optical
depth to Thomson scattering in the right vertical axis
as ωCAP = TkSZ/TCMB · c/ε

rec
v . We evaluate the

signal-to-noise ratio as in Eq. 10. We use the Illustris
z = 0.5 curve as the reference “model” for the S/N ,
leading to S/N = 9.8.
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FIG. 8: The measured stacked kSZ in µK arcmin2 for
varying CAP filters with radius R from Eq. 8 in brown.
We include the corresponding comoving distances at
z = 0.8 on the top horizontal axis. Several simulation
CAP profiles are included, each rescaled in amplitude to
match the measured signal at the largest aperture where
all the baryons should be encompassed (upper panel), or
with the amplitude left free to facilitate a comparison of
their shapes in the presence of mass mismatch between
data and simulation (lower panel). For the IllustrisTNG
case (solid blue, labeled TNG in the figure), the profile
shape more closely follows that of dark matter than
the observed data. For Illustris (light blue dashed) at
z = 0.8, the profiles tend to align more closely with the
observations. In contrast, when comparing the Illustris
profile at z = 0.5 (light green dashed), taken from [42],
we find a better match with the shape of the kSZ profile.
The bands on the lower panel propagate the uncertainty
on the profile amplitude from Eq. 15. The vertical gray
line shows the virial radius added in quadrature with
the beam standard deviation (FWHM/

√
8 ln(2)) and the

secondary axis on the right translates to the integrated
optical depth of Thomson scattering.

B. Simulation predictions: Illustris and Illustris
TNG

We compare our results with simulations following the
methodology outlined in [42]. This is possible because
our spectroscopic LRG galaxies are selected based on
their photometric counterparts. The spectroscopic LRG
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FIG. 15: Comparison between the kSZ stacked CAP
profiles obtained when using the photometric DESI
LRG sample (from the DESI Legacy Imaging Surveys
DR9 in red, subsample from what is used in [42])
and its spectroscopic counterpart (from DESI Y1 in
brown). The matching shapes for the smaller scales
proves the robustness of the kSZ stacking method on both
photometric and spectroscopic galaxies.

missing important redshift information. In contrast,
spectroscopic surveys provide a smaller yet more
precise 3D distribution of galaxies, which is why
kSZ measurements have historically relied more on
the latter. A recent simulation-based study [83, 84]
found that measuring the velocity stacking kSZ in
photometric LRG-type galaxies is feasible, although it
results in degraded S/N which can be compensated by
increasing the sample size (by approximately four times).
Consequently, [42] measured the kSZ signal through
velocity stacking using the DESI Legacy Imaging Survey
[85] and the ACT DR6 CMB, focusing specifically on
the LRG targets for the complete DESI survey. In this
section, we compare both results.

The photometric sample of LRG from the DESI Legacy
Imaging Survey achieves a ωz/(1 + z) ↭ 0.02. It consists
of two catalogs: the ‘Main LRG’ and ‘Extended LRG’,
the latter having 2–3 times the DESI LRG density [148].
For an accurate comparison, we examine the ‘Main LRG’
photometric sample from [42], which shares the same
statistical properties as the spectroscopic sample in this
paper, as it corresponds to the spectroscopic targets used
by DESI.

For the DR9 sample, shown in the last row of Table 3
from [42], the kSZ is measured with εnull = 95.6 an S/N

= 9.1 using a total of 3,118,161 galaxies. When plotting
the CAP profiles of the photometric and spectroscopic
counterparts together, as shown in Fig. 15, we find
agreement in both the shapes and amplitudes. The
reduced chi-squared statistic for the di!erence between
these two measurements is !ε

2

null
/dof = (105.4 →

95.6)/9 = 9.8/9 ↑ 1.1, indicating that the profiles are

consistent with each other (assuming their covariances
are the same, after verifying the consistency of their
covariances).

We note that we do not consider the highest S/N result
reported in [42] because it includes additional corrections
that are not directly transferable to our spectroscopic
results. These include the removal of outliers with
large errors in their reconstructed velocities, as well as
imposing a maximum cut on the estimated photo-z error
(ω(z) < 0.05).

G. Current and future prospects: S/N forecasts

Since the first velocity stacking kSZ measurements, we
have seen a steady growth of the S/N with larger galactic
catalogs. Upcoming galaxy surveys, both spectroscopic
and photometric, that overlap with CMB experiments
will increment the S/N further. In this section, we study
forecasts on the kSZ S/N .

In Fig. 16, we present the S/N of of present and future
LRG catalogs. To convert from an e!ective number of
spectroscopic LRG to the equivalent photometric one in
the context of measuring kSZ, we used the respective
correlation coe"cients and rescale Nphoto = Nspec ·
(rspec/rphoto)2, assuming the mean masses are the same
and rspec/rphoto = 0.65/0.30 [84].

The blue and brown star symbols correspond to the
results shown in this work (CMASS and DESI Y1) when
using the ACT DR6 CMB map. The red star symbol
(DESI LS DR9) shows the result when using the Legacy
Survey Data Release 9 from the DESI collaboration [42].
To study how well this is consistent with

S/N ↓ Mh · r ·
↔
N, (11)

where Mh corresponds to the host halo mass of the
galaxy in units of M→/h, r to the correlation coe"cient
from Eq. 8, and N to the number of galaxies, we plot
S/NDESI Y1 ·

√
Nspec/NDESI Y1 and find that the results

are indeed well fitted by this relationship.
Given this consistency we extrapolate our results to

forecast the S/N of the next data release of LRG from
DESI Year 3 (Y3)10, and the selection of redMaGiC
galaxies and clusters from the cosmoDC2 photometric
simulation of LSST. For the photometric forecasts, we
assume the same mean photometric error (ω(z)/(1+z) ↭
0.02) [148], which matches the “LSST goal” [77].

For the forecast of DESI Y3, in purple, we simply
scaled by the number of LRG galaxies overlapping with
ACT DR6 in the upcoming Y3 data release of DESI,
corresponding approximately to 3.2·106 spectroscopically
observed galaxies. This results in a kSZ S/N

DESI Y3 ↑

10
LRG galaxies from DESI Year 5 will mainly consist of

north-hemisphere samples, and therefore, would not overlap with

the ACT map.

CAP filter avoids displaying constant CMB mode, but is not required. 
Fourier measurements simplify this

Corr. Coefficient.

Ried Guachalla+25



kSZ is faint. Is precision enough for lensing?

Precision already informative in 2021, now much better & improving 

Baryons are 15% of the matter.  
For 1%-precision lensing, only 7%-precision kSZ needed 
→ statistics will not be limiting 

→ Modeling is the challenge
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FIG. 5. CMASS galaxy-galaxy lensing signal. Data from [ 26]
(green circles) are compared to HOD model predictions from
[94] (MDR1, red line) and our model that include a baryons
correction (blue line) to the MDR1. This correction uses the
best fit density profile from kSZ measurements (Section III B
and Figure 3). The gold band illustrates the uncertainty in
the model from the stellar component and the vertical grey
lines show the radial range in which we have kSZ observations;
outside this radial range we are extrapolating. The baryon
correction that we estimated to the MDR1 model reduces the
di!erence between the galaxy-galaxy measurements and HOD
model predictions by half (50%), but does not reconcile it.
The dashed red line illustrates the maximum correction to the
MDR1 model, which is to remove all baryons without altering
the dark matter profile. This extreme model still does not
reconcile this model and observations below 500 kpc /h.

Here l is the line-of-sight direction on which we project,
and the profile we fit is spherically symmetric so there
is no preferred axis. The ∆Σb(R) profile is calculated
using Equation 20 once Σ(R) is calculated. We normalize
∆Σb(R) such that the baryon contribution to ∆Σtot equals
fb∆ΣDM at Rmax:

∆Σb(R)→ ∆Σb(R)× fb∆ΣDM(Rmax)

∆Σb(Rmax)
. (22)

Here Rmax is the maximum angular radial bin for which we
have a kSZ measurement. To summarize, we assumed that
all the baryons are present within the maximum radius
that we measured and beyond this radius the baryons
trace the dark matter. We note that this model does not
include the e!ect of the dark matter profile rearranging
itsel"n response to the new baryon profile, often referred
to as a “back-reaction” to the baryons (e.g. [ 27, 28]). We
expect this to be a second-order correction to the model
(supported by simulations e.g. [ 28]), smaller than the
baryonic e!ect we included.

Figure 5 shows the original galaxy-galaxy lensing mea-
surement from [26] with green points and error bars, along
with the original MDR1 HOD model from [94] shown as
a red line. Our new estimate for the MDR1 halo model

with a baryon correction coming from our kSZ profile
measurements is shown in blue and the corresponding
blue band illustrates the 2σ uncertainty obtained by sam-
pling the best fit GNFW MCMC chains. The dashed red
line illustrates what the [ 94] HOD model would predict
if one were to remove all the baryons. This “no-baryons”
curve sets a lower limit to the MDR1 HOD model of the
galaxy-galaxy lensing signal, in the absence of a modifica-
tion to the dark matter profile. The yellow band shows
the 2σ upper limit from the stellar component of ∆Σtot

following the calculations from [ 95] and the vertical grey
lines show the radial range of kSZ measurements from
[18]. Our estimates for the inner radii beyond the grey
boundary are extrapolations of the model. At these radii
the uncertainty from the stellar component is dominant.

Our empirical model for the baryon correction to the
MDR1 halo model does reduce the di !erence between
the galaxy-galaxy lensing measurement of the CMASS
sample [26] and the predicted signal from the [94] MDR1
HOD model, which is calibrated to the clustering of the
CMASS sample. At its largest our baryon correction
accounts for half the di !erence (50%). However, the
lensing measurements still fall below our model on all
scales. Even assuming an extreme baryon correction
model where all the baryons are removed from MDR1
HOD model, without altering the dark matter profile,
the measured lensing signal is still below the model on
scales of 500 kpc/h and less. The impact of baryons is
one of many e!ects considered in [26], the others being
measurement systematics, sample selection, assembly bias,
and extensions to our concordance cosmological model. It
is likely that a combination of these e !ects is responsible
for the low lensing signal (e.g. [ 96]), since baryonic e !ects
cannot explain the entire di !erence.

V. COMPARISON TO SIMULATIONS

Our measured kSZ and tSZ profiles from ACT +CMASS
[18] o!er a new opportunity to test current cosmological
simulations [ 14, 42, 43] and the sub-grid physics models
they include to capture physical processes like feedback
from stellar sources and AGN. Since these measurements
are new, current simulations are not calibrated to match
them, and thus the simulations permit a genuine predic-
tion for these tSZ and kSZ CGM profiles.

We use predicted density and pressure profiles from
Illustris TNG [ 28] and the [46] simulations, and a NFW
density profile [20], shown in the top panel of Figure 6. For
the TNG simulations, we use the simulation snapshot data
that matches the mean redshift of the CMASS sample
most closely. We further model the CMASS sample by
selecting halos from Illustris TNG that were “red” in
color, according to Illustris TNG, and we weight each
halo’s contribution by its mass, for both the stellar and
halo mass distribution to match the observed sample’s
stellar (TNG S) and halo mass (TNG H) distributions,
respectively. These two halo selections are meant to
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FIG. 5. CMASS galaxy-galaxy lensing signal. Data from [ 26]
(green circles) are compared to HOD model predictions from
[94] (MDR1, red line) and our model that include a baryons
correction (blue line) to the MDR1. This correction uses the
best fit density profile from kSZ measurements (Section III B
and Figure 3). The gold band illustrates the uncertainty in
the model from the stellar component and the vertical grey
lines show the radial range in which we have kSZ observations;
outside this radial range we are extrapolating. The baryon
correction that we estimated to the MDR1 model reduces the
di!erence between the galaxy-galaxy measurements and HOD
model predictions by half (50%), but does not reconcile it.
The dashed red line illustrates the maximum correction to the
MDR1 model, which is to remove all baryons without altering
the dark matter profile. This extreme model still does not
reconcile this model and observations below 500 kpc /h.

Here l is the line-of-sight direction on which we project,
and the profile we fit is spherically symmetric so there
is no preferred axis. The ∆Σb(R) profile is calculated
using Equation 20 once Σ(R) is calculated. We normalize
∆Σb(R) such that the baryon contribution to ∆Σtot equals
fb∆ΣDM at Rmax:

∆Σb(R)→ ∆Σb(R)× fb∆ΣDM(Rmax)

∆Σb(Rmax)
. (22)

Here Rmax is the maximum angular radial bin for which we
have a kSZ measurement. To summarize, we assumed that
all the baryons are present within the maximum radius
that we measured and beyond this radius the baryons
trace the dark matter. We note that this model does not
include the e!ect of the dark matter profile rearranging
itsel"n response to the new baryon profile, often referred
to as a “back-reaction” to the baryons (e.g. [ 27, 28]). We
expect this to be a second-order correction to the model
(supported by simulations e.g. [ 28]), smaller than the
baryonic e!ect we included.

Figure 5 shows the original galaxy-galaxy lensing mea-
surement from [26] with green points and error bars, along
with the original MDR1 HOD model from [94] shown as
a red line. Our new estimate for the MDR1 halo model

with a baryon correction coming from our kSZ profile
measurements is shown in blue and the corresponding
blue band illustrates the 2σ uncertainty obtained by sam-
pling the best fit GNFW MCMC chains. The dashed red
line illustrates what the [ 94] HOD model would predict
if one were to remove all the baryons. This “no-baryons”
curve sets a lower limit to the MDR1 HOD model of the
galaxy-galaxy lensing signal, in the absence of a modifica-
tion to the dark matter profile. The yellow band shows
the 2σ upper limit from the stellar component of ∆Σtot

following the calculations from [ 95] and the vertical grey
lines show the radial range of kSZ measurements from
[18]. Our estimates for the inner radii beyond the grey
boundary are extrapolations of the model. At these radii
the uncertainty from the stellar component is dominant.

Our empirical model for the baryon correction to the
MDR1 halo model does reduce the di !erence between
the galaxy-galaxy lensing measurement of the CMASS
sample [26] and the predicted signal from the [94] MDR1
HOD model, which is calibrated to the clustering of the
CMASS sample. At its largest our baryon correction
accounts for half the di !erence (50%). However, the
lensing measurements still fall below our model on all
scales. Even assuming an extreme baryon correction
model where all the baryons are removed from MDR1
HOD model, without altering the dark matter profile,
the measured lensing signal is still below the model on
scales of 500 kpc/h and less. The impact of baryons is
one of many e!ects considered in [26], the others being
measurement systematics, sample selection, assembly bias,
and extensions to our concordance cosmological model. It
is likely that a combination of these e !ects is responsible
for the low lensing signal (e.g. [ 96]), since baryonic e !ects
cannot explain the entire di !erence.

V. COMPARISON TO SIMULATIONS

Our measured kSZ and tSZ profiles from ACT +CMASS
[18] o!er a new opportunity to test current cosmological
simulations [ 14, 42, 43] and the sub-grid physics models
they include to capture physical processes like feedback
from stellar sources and AGN. Since these measurements
are new, current simulations are not calibrated to match
them, and thus the simulations permit a genuine predic-
tion for these tSZ and kSZ CGM profiles.

We use predicted density and pressure profiles from
Illustris TNG [ 28] and the [46] simulations, and a NFW
density profile [20], shown in the top panel of Figure 6. For
the TNG simulations, we use the simulation snapshot data
that matches the mean redshift of the CMASS sample
most closely. We further model the CMASS sample by
selecting halos from Illustris TNG that were “red” in
color, according to Illustris TNG, and we weight each
halo’s contribution by its mass, for both the stellar and
halo mass distribution to match the observed sample’s
stellar (TNG S) and halo mass (TNG H) distributions,
respectively. These two halo selections are meant to
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Figure 3. The baryon density profile (left), kSZ temperature profile at 150 GHz (top center) and 98 GHz (bottom center), and the GGL excess surface mass
density profile (top right). We additionally show the fractional di!erence in ωε relative to a model without any baryons (bottom right). The black points
correspond to observations, the red corresponds to our fiducial model being fit to only the kSZ measurements, the blue corresponds to our fiducial model being
fit to only the GGL measurements, and the purple corresponds to our joint fits to both the kSZ and GGL data. Dashed curves refer to the median (50th percentile)
model of the posterior distribution and the bands denote the ±1𝐿 (32nd-68th percentiles) of the distribution of model curves. Lastly, solid curves denote the
best-fit to the model. We show that the profile of the baryon density is tightly constrained by the joint fit relative to our kSZ or GGL only fits and qualitatively
di!erent compared to the data limited fits. We show that the joint fit of kSZ with GGL tightly constrains the baryon suppression in ωε at small scales.

Figure 4. Constraints on the halo mass from GGL where baryons are neglected
(dark blue, 𝑀cdm = 1), where the baryon contribution and its uncertainty is
modelled (blue, 𝑀cdm = 1 → 𝑀b) and where kSZ is jointly fit with the GGL to
constrain the baryon parameters (purple). The prior range for the halo mass
adopted by (Bigwood et al. 2024) to encompass the uncertainty on the stellar
masses and the SHMR spans beyond the extent of the plot.

inclusion of the kSZ measurements. That is, a joint analysis of GGL
and kSZ can account for the gas parameters, shrinking the width of
the posterior back down, while the halo mass estimate undergoes a
↑ 20% shift compared to the no-baryon model. We note that our
joint kSZ+GGL constraints on 𝐿halo are expected to be underesti-
mated by ↭ 10% compared to the mean halo mass of the sample
↓𝐿halo↔ = 3 ↗ 1013 M↘ likely due to the exclusion of miscentering
in our model (Skibba et al. 2011; Hoshino et al. 2015).

A crucial step in using kSZ profile measurements as a benchmark
for feedback models and simulations is an accurate constraint on the
halo mass. The halo mass can change both the shape and the ampli-
tude of the kSZ signal as seen in Figure 1. The ratio of kSZ signals
modelled with halo masses of 1014 M↘ and 1013 M↘ is ≃ 2.1 at

𝑀 = 1⇐ and grows with increasing 𝑀, plateauing to ≃ 3.3 at 𝑀 = 6⇐.
Assuming a certain halo mass estimated from stellar masses is po-
tentially dangerous as stellar masses and SHMR can be biased (Yuan
et al. 2021; Oyarzún et al. 2024). These kSZ profile measurements
were jointly analysed with cosmic shear for the first time by Bigwood
et al. (2024) to constrain the power spectrum and they found a best-
fitting model with stronger baryonic feedback than hydrodynamical
simulations predict. As discussed in Bigwood et al. (2024) (their Ap-
pendix B3), a major source of uncertainty in constraining the impact
of baryonic feedback from kSZ and cosmic shear measurements, was
the halo mass of the sample, which spans almost an order of magni-
tude: 𝐿halo = 0.8→30↗1013 𝐿↘ (significantly larger than the range
of masses plotted in Figure 4). For this reason, Bigwood et al. (2024)
had to use a large prior for 𝐿halo : U[5 ↗ 1012, 7 ↗ 1013]. Having
such a large uncertainty on halo masses make it di"cult to interpret
the strength of baryonic feedback from the stacked kSZ profiles mea-
sured by Schaan et al. (2021); Hadzhiyska et al. (2024a) and future
measurements to come. The methodology in this work can provide a
more precise prior on the e!ective halo mass of the sample.

We compare our (2𝑁) posteriors on the halo mass
log10 (𝐿halo,200m/M↘) = 13.44 ± 0.12 to the halo mass found by
McCarthy et al. (2024) where they jointly analysed the kSZ and
GGL measurements with the FLAMINGO simulation suite (Schaye
et al. 2023). In this work we’ve used a mass definition of 𝐿200m,
to match McCarthy et al. (2024) we transform to a mass definition
of 𝐿500c using an NFW profile (Navarro et al. 1997) and the con-
centration mass relation of Du!y et al. (2008). Our (2𝑁) posteriors
on the halo mass are log10 (𝐿halo,500c/M↘) = 13.22 ± 0.12 and the
(2𝑁) posteriors on the halo mass from McCarthy et al. (2024) are
log10 (𝐿500c/M↘) = 13.34 ± 0.04. We find that our estimate of the
halo mass is ↑ 30% lower than what was found by McCarthy et al.
(2024).

Moreover, getting an unbiased estimate of the halo mass is cru-
cial for modelling the tSZ e!ect (Moser et al. 2021, 2023) and the
matter power spectrum suppression due to baryons (Debackere et al.
2020). Unlike the kSZ e!ect which scales linearly with halo mass
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fit to only the GGL measurements, and the purple corresponds to our joint fits to both the kSZ and GGL data. Dashed curves refer to the median (50th percentile)
model of the posterior distribution and the bands denote the ±1𝐿 (32nd-68th percentiles) of the distribution of model curves. Lastly, solid curves denote the
best-fit to the model. We show that the profile of the baryon density is tightly constrained by the joint fit relative to our kSZ or GGL only fits and qualitatively
di!erent compared to the data limited fits. We show that the joint fit of kSZ with GGL tightly constrains the baryon suppression in ωε at small scales.
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adopted by (Bigwood et al. 2024) to encompass the uncertainty on the stellar
masses and the SHMR spans beyond the extent of the plot.

inclusion of the kSZ measurements. That is, a joint analysis of GGL
and kSZ can account for the gas parameters, shrinking the width of
the posterior back down, while the halo mass estimate undergoes a
↑ 20% shift compared to the no-baryon model. We note that our
joint kSZ+GGL constraints on 𝐿halo are expected to be underesti-
mated by ↭ 10% compared to the mean halo mass of the sample
↓𝐿halo↔ = 3 ↗ 1013 M↘ likely due to the exclusion of miscentering
in our model (Skibba et al. 2011; Hoshino et al. 2015).

A crucial step in using kSZ profile measurements as a benchmark
for feedback models and simulations is an accurate constraint on the
halo mass. The halo mass can change both the shape and the ampli-
tude of the kSZ signal as seen in Figure 1. The ratio of kSZ signals
modelled with halo masses of 1014 M↘ and 1013 M↘ is ≃ 2.1 at

𝑀 = 1⇐ and grows with increasing 𝑀, plateauing to ≃ 3.3 at 𝑀 = 6⇐.
Assuming a certain halo mass estimated from stellar masses is po-
tentially dangerous as stellar masses and SHMR can be biased (Yuan
et al. 2021; Oyarzún et al. 2024). These kSZ profile measurements
were jointly analysed with cosmic shear for the first time by Bigwood
et al. (2024) to constrain the power spectrum and they found a best-
fitting model with stronger baryonic feedback than hydrodynamical
simulations predict. As discussed in Bigwood et al. (2024) (their Ap-
pendix B3), a major source of uncertainty in constraining the impact
of baryonic feedback from kSZ and cosmic shear measurements, was
the halo mass of the sample, which spans almost an order of magni-
tude: 𝐿halo = 0.8→30↗1013 𝐿↘ (significantly larger than the range
of masses plotted in Figure 4). For this reason, Bigwood et al. (2024)
had to use a large prior for 𝐿halo : U[5 ↗ 1012, 7 ↗ 1013]. Having
such a large uncertainty on halo masses make it di"cult to interpret
the strength of baryonic feedback from the stacked kSZ profiles mea-
sured by Schaan et al. (2021); Hadzhiyska et al. (2024a) and future
measurements to come. The methodology in this work can provide a
more precise prior on the e!ective halo mass of the sample.

We compare our (2𝑁) posteriors on the halo mass
log10 (𝐿halo,200m/M↘) = 13.44 ± 0.12 to the halo mass found by
McCarthy et al. (2024) where they jointly analysed the kSZ and
GGL measurements with the FLAMINGO simulation suite (Schaye
et al. 2023). In this work we’ve used a mass definition of 𝐿200m,
to match McCarthy et al. (2024) we transform to a mass definition
of 𝐿500c using an NFW profile (Navarro et al. 1997) and the con-
centration mass relation of Du!y et al. (2008). Our (2𝑁) posteriors
on the halo mass are log10 (𝐿halo,500c/M↘) = 13.22 ± 0.12 and the
(2𝑁) posteriors on the halo mass from McCarthy et al. (2024) are
log10 (𝐿500c/M↘) = 13.34 ± 0.04. We find that our estimate of the
halo mass is ↑ 30% lower than what was found by McCarthy et al.
(2024).

Moreover, getting an unbiased estimate of the halo mass is cru-
cial for modelling the tSZ e!ect (Moser et al. 2021, 2023) and the
matter power spectrum suppression due to baryons (Debackere et al.
2020). Unlike the kSZ e!ect which scales linearly with halo mass
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Subtracting baryons from galaxy-galaxy lensing 
is a well-posed problem

➞ Directly subtract the baryonic contribution! 
Same halos, HOD, weighting (linear in mass, VS tSZ or Xray), angular 
scales 
Hadzhiyska+25, Sunseri+25, McCarthy+25
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Galaxy formation & Cosmic shear: trickier!

kSZ only measured around some halos at some z 
Cosmic shear = sum over halo masses & z 
→ Extrapolation needed (Lucie-Smith+25) 

Universality of matter power suppression? (Van Daalen+20, Joop's talk) 
→ would help! 

Comparison with simulation requires matching galaxy sample 
mass (stellar or halo? mean or distribution?) 
satellite fraction & miscentering 
HOD? 
→ All "large feedback" claims hinge on this 

Great progress being made in modeling 
Bigwood+24, Sunseri+25, McCarthy+25



Outline: Combining CMB & LSS
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Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫

dD
(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫

d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q ± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =

∫

d2L

(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫

d2l′

(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =

∫

d2l′

(2π)2

[

Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]

W (l′,L) ,

δB(l) =

∫

d2l′

(2π)2

[

B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]

W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect
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Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,
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where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =
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ments by (Hu 2000b)
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CMB lensing: overview
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Surface brightness:  
Born approximation: 

T (x) = T 0(x� d(x))
d = r� = 2r��1



~2’ deflections, coherent on degree scale 
Surface brightness:  
Born approximation: 

T (x) = T 0(x� d(x))
d = r� = 2r��1

CMB lensing: overview

0 10 20
x [deg]

0

5

10

15

20

y
[d

eg
]

°0.2

°0.1

0.0

0.1

0.2𝜅CMB



~2’ deflections, coherent on degree scale 
Surface brightness:  
Born approximation: 

T (x) = T 0(x� d(x))
d = r� = 2r��1

CMB lensing: overview

0 10 20
x [deg]

0

5

10

15

20

y
[d

eg
]

°300

°200

°100

0

100

200

300unlensed CMB



~2’ deflections, coherent on degree scale 
Surface brightness:  
Born approximation: 
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CMB lensing: overview
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Lensing breaks the statistical isotropy of the CMB 
by coupling small and large scales 
➞ Reconstruct with a quadratic estimator
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Naive way to get lensing power spectrum:
look at ⟨κ̂κ̂⟩
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Noise bias present even without lensing → Subtract it!
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Recall κ̂L ∼

∫
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Once we have realistically inhomogeneous instrument noise.

1% error on Gaussian Bias
0.1% error on Gaussian Bias
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.
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l

Standard RDN(0)

Our Method

Naive Theory Subtraction

.

Requires some assumed
total CMB spectrum.

Hard to get sufficiently
accurate these days

28/35Useful even for realistic inhomogeneous noise 
No computational cost 
No statistical cost

Delon Shen

Useful with mask & noise anisotropy

Shen Schaan Ferraro 2024



Bayesian lensing bias is robust 
to polarized extragalactic foregrounds 

& 
Bayesian analog of point source hardening

Qu Milllea Schaan 2024



Extragalactic foregrounds: Temperature

adapted from Sehgal+09
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Power dominant on small scales 
➞ extra noise 
Statistics is non-Gaussian, uncertain 
and correlated with 𝜿CMB 

➞ Several percent bias (bispec.+trispec.) 
Schaan Ferraro 18 

➞ limits 𝓁max≃3000 for SO and S4  

Point source/profile hardening, shear, 
asymmetric QE help 
 Sailer+21, 23, Darwish+23, Madhavacheril Hill 18 & 
many more
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adapted from Sehgal+09

kSZ radio PStSZ CIBCMB

Extragalactic foregrounds: Polarization
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Fewer foregrounds, smaller power, simpler statistics (Poisson) 
Radio power scales as sensitivity after masking point sources 
Optimal methods outperform QE in polarization 
➞ Sensitivity to foregrounds? Analog of point source hardening?



Optimal lensing fits point sources as convergence dipoles
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QE too!

Qu Millea Schaan 24

gradient



Bias to Bayesian lensing is small for CMB-S4

Qu Millea Schaan 24
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FIG. 9. Radio point source bias to the lensing power spectrum, for CMB-S4 deep (top row) and deep settings (bottom row)
at 90 GHz where radio sources are more prominent. For each setting considered, we vary the mask threshold (horizontal axis)
and CMB scale cut (vertical axis). On the left we show the e↵ect of having non Gaussian foregrounds present in the data
but the foregrounds are not modelled in the simulations. This scenario, corresponding to no foreground mitigation, can incur
large biases, specially on the SE-deep setting. A basic mitigation is then to include and model the simulations as Gaussian
foregrounds (2nd column), this is e↵ective in reducing the bias due to radio sources.

V. MARGINALIZING OVER A POISSON
FOREGROUND COMPONENT

After masking, the polarized radio and IR sources do
not produce a large lensing bias, hence no further mitiga-
tion is required for CMB-S4. For more futuristic exper-

iments with higher sensitivity or resolution (e.g., [94]),
the foreground bias could potentially be larger. In that
case, it could be reduced further by explicitly marginal-
izing over a foreground model in the Bayesian analysis.
The posterior function Eq. (2) thus acquires an additional
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Ratio of bias to statistical uncertainty

For futuristic experiments where the bias may be important, 
we derive an analog to point source hardening  



Outline: Combining CMB & LSS

2

Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫

dD
(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫

d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q ± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =

∫

d2L

(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫

d2l′

(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =

∫

d2l′

(2π)2

[

Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]

W (l′,L) ,

δB(l) =

∫

d2l′

(2π)2

[

B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]

W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect

Mass shadows 
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Conclusions

Thank you!

Key Astrophysics & BSM physics 
Galaxy formation, dark energy, dark matter, inflation, neutrinos 

 
 
Key new experiments coming along 
DESI, Rubin LSST, Simons Observatory 

 

CMB is a large-scale structure probe 
Useful insights from combining CMB & LSS 

𝜈
The SO Site 

Simons Array

ACT

CLASS

SO-Nominal

භ 5,200 meters:  high and dry 
භ 23 degree South Latitude
භ Established site 
භ Room for expansion
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