

Line Intensity Mapping Enabling cross-correlations for robust cosmological detections

Great to be back!

What this talk is (not) about

This talk: Enabling LIM cross-correlations

LIM auto & cross modeling Schaan White 21a, b

Ly-α² x CMB lensing Doux Schaan+16, La Posta Schaan 24

CHIME² x CMB lensing, Pinsonneault-Marotte+in prep

CIB lensing Schaan Ferraro Spergel 19

LIM-pair lensing Doux Schaan+16, Schaan+18, Maniyar Schaan Pullen 21

Direct LIM x CMB lensing Shen Kokron Schaan+25

Astro colloquium next week: CMB secondary anisotropies kSZ, tSZ, lensing, etc.

The Universe as a fundamental Physics laboratory

IM challenges: cross-correlations will be crucial

Avoid noise biases and continuum foregrounds

Beane Villaescusa-Navarro Lidz 19

Remove line interlopers with line-line cross-correlations Cheng+20, Gong+20, Sun+21, **Schaan White 21a**

Deproject any contaminant template (e.g., source catalog)

Furlanetto+07, Lidz+09, Visbal+10,11, and many more

Higher signal-to-noise in cross-correlation for first detections *Pen+08, Chang+10*

Test the matter-light relation

Doux Schaan+16, Schaan+18, Maniyar Schaan Pullen 21

(Need accurate model for cross-correlations)

Schaan White 21a, b

Evidence: CHIME x eBOSS results

First interferometric cosmological 21cm detection!

But at higher z, spectroscopic samples may no longer be available...

→ Use photometric samples / CMB?

Dominant continuum foreground (Milky Way)

→ Missing low k₁ modes

CHIME collaboration 2022

Dominant continuum foreground (Milky Way)

→ Missing low k₁ modes

Interferometry with cross-talk

 \rightarrow Missing low k_{\perp} modes

Dominant continuum foreground (Milky Way)

→ Missing low k₁ modes

Interferometry with cross-talk

 \rightarrow Missing low k_{\perp} modes

Frequency-dependent beam

→ Missing "wedge"

CHIME collaboration 2022

Dominant continuum foreground (Milky Way)

→ Missing low k₁ modes

Interferometry with cross-talk

 \rightarrow Missing low k_{\perp} modes

Frequency-dependent beam

- → Missing "wedge"
- → Apparently no mode overlap with ~2D datasets

Dominant continuum foreground (Milky Way)

→ Missing low k₁ modes

Interferometry with cross-talk

 \rightarrow Missing low k_{\perp} modes

Frequency-dependent beam

- → Missing "wedge"
- → Apparently no mode overlap with ~2D datasets

How to enable these cross-correlations?

Non-Gaussian reconstruction of missing large scales from small scales

Reconstructing large scales: position-dependent power spectrum

Tidal reconstruction: growth & dilation from gravitational nonlinearities

Hamilton+06, Baldauf Seljak+11, de Putter+12, Sherwin+12, Li+14, Chiang+14, **Schaan Takada Spergel 14, Doux Schaan+16**, Foreman+18, **La Posta Schaan 24**

$$P(\mathbf{k}) = \bar{P}(\mathbf{k}) \left[1 + \left(\underbrace{\frac{68}{21}}_{\text{growth}} - \underbrace{\frac{1}{3} \frac{d \ln k^3 \bar{P}}{d \ln k}}_{\text{dilation}} \right) \delta_{\mathbf{L}} \right]$$

Lensing reconstruction: magnification & shear

Pen 04, Cooray 04, Zhang+ 05,06,11, Zahn Zaldarriaga 06, Metcalf White 07, Lu Pen 07, Portsidou Metcalf 13, Croft+17, Metcalf+17, Schaan Ferraro Spergel 18, Foreman+18, Chakraborty Pullen 19, Schaan Ferraro 19, Maniyar Schaan Pullen 21

$$C_{\boldsymbol{\ell}} = C_{\boldsymbol{\ell}}^0 \left[1 + \kappa \left\{ \underbrace{\frac{\partial \ln \ell^2 C_{\ell}^0}{\partial \ln \ell}}_{\text{Shear}} + \underbrace{\cos(2\theta_{\ell}) \frac{\partial \ln C_{\ell}^0}{\partial \ln \ell}}_{\text{Magnification}} \right\} \right]$$

These methods are promising!

S/N on lensing or tidal reconstruction power spectra						
quantity / experiment	CMB S4	21-cm-S2,	21-cm-S2,			
		no wedge	with wedge			
lensing x ~LSST g	367	676	358			
lensing x ~LSST shear	178	367	173			
lensing auto	353	216	8			
tidal rec. auto	-	2240	266			

21cm-S2: 2 < z < 6, 256 x 256 6m dishes, 5 years

Foreman+18, Ansari+19

Tidal reconstruction for Ly- α forest: Enabling cross-correlation with CMB lensing

 5σ detection

First detection with BOSS & Planck Generic method: correlate any IM with CMB lensing (eg, 21cm x kSZ) Li Zhu Pen 18, Foreman+18, Darwish+21 Probe the halo - IM connection

Adrien La Posta

Tidal reconstruction for Ly- α forest: Enabling cross-correlation with CMB lensing

Forecast for DESI & ACT/SO/S4

	SNR					
Dataset	z_1	z_2	z_3	z_4	z_5	Combined
Planck+BOSS	1.9	2.2	2.0	2.2	1.5	4.4
ACT+DESI-Y1	2.4	2.8	2.6	2.8	1.9	5.7
ACT+DESI-Y5	4.5	5.1	4.8	5.1	3.5	10.3
SO+DESI-Y5	6.3	7.2	6.8	7.4	5.1	14.8
CMB-S4+DESI-Y5	8.5	9.8	9.3	10.2	7.1	20.2

DESI Y1 & Planck detected at 4.8σ Göksel Karaçayli+24

Look forward to Belsunce+!

CHIME² x Planck lensing bispectrum

+ CHIME

Tristan
Pinsonneault
-Marotte

Zeeshan Ahmed Nick Kokron Mark Halpern Shabbir Shaikh Simon Foreman

Configuration	S/N
Measured: CHIME x Planck	0.2
Simulated: CHIME x Planck	0.5
Simulated: CHIME 1000 nights x Planck	3
Simulated: CHIME 1000 nights x SO-like	5

Pinsonneault-Marottte+ & CHIME in prep (inc. Schaan)

Simulated signal from SkyLine Sato-Polito Kokron Bernal 22
Propagated through CHIME pipeline
Implemented estimator & applied it to CHIME x Planck lensing

→ Marginal detection possible soon

Multi-line IM lensing

Abhi Maniyar Anthony Pullen

New source plane at high z

→ Nulling: isolate the *very*-high-z Universe

Using pair of lines at same z...

nulls the interloper bias!

Leakage of large scales into small scales from time-evolution

Mode mixing from time evolution

Delon Shen

Nick Kokron

 \sim Line-emission imes Matter Fluctuations

Credit: Delon Shen

Mode mixing from time evolution

Delon Shen

Nick Kokron

 \sim Line-emission \times Matter Fluctuations

 $\sim t \times \sin(x)$

Credit: Delon Shen

Nick Delon

Kokron

Shen

Mode mixing from time evolution

 \sim Line-emission \times Matter Fluctuations

 $\sim t \times \sin(x)$

Credit: Delon Shen

Mode mixing from time evolution

Delon Shen

Nick Kokron

 \sim Line-emission \times Matter Fluctuations

 $\sim t \times \sin(x)$

No Lightcone Evolution

Credit: Delon Shen

LIM Fourier mode = matter density Fourier mode

Delon Shen

Nick Kokron

Mode mixing from time evolution

Delon Nick

Shen

Mode mixing from time evolution

LIM Fourier mode > all matter Fourier modes

True even in linear theory

 $\sim t \times \sin(x)$

$$I^{
m obs}(\chi) \sim K_{
m LIM}(\chi) \delta_{\it m}(\chi)$$

$$I^{
m obs}(\mathbf{k}) \sim \int_{\mathbf{q}} K_{
m LIM}(\mathbf{k}-\mathbf{q}) \delta_{\mathbf{m}}(\mathbf{q})$$

Origin of the time evolution

Time evolution mostly due to halo luminosity evolution, not b.D

→ Specific to LIM VS galaxy surveys

Forecasting direct LIM x CMB lensing correlation

Sherr Kekron Schaan 25

Direct cross-correlations LIM \times 2D more promising than anticipated

Forecasting direct LIM x CMB lensing correlation

Direct cross-correlations LIM x 2D more promising than anticipated

Mode coupling present even in linear theory
Motivates exploring other 2D fields (CIB, SZ, etc)
(Limber approximation inaccurate here)
(Delon unifies/clarifies signal & noise models for several LIM)

Conclusions

Cross-correlations with CMB / galaxy surveys are crucial for IM at high z

Foregrounds → Missing large-scale Fourier modes

But the large-scales can be reconstructed from small scales via tidal reconstruction and lensing reconstruction

Doux Schaan+16, Schaan Ferraro Spergel 19, Maniyar Schaan Pullen 21, La Posta Schaan 24, Pinsonneault-Marotte+in prep

Large-scales also leak into small-scales due to time evolution

Shen Kokron Schaan 25

Pairs of lines at same z avoid many interloper biases

Schaan White 21a, b, Maniyar Schaan Pullen 21