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What this talk is (not) about

This talk: Enabling LIM cross-correlations 
LIM auto & cross modeling Schaan White 21a, b 
Ly-⍺2 x CMB lensing Doux Schaan+16, La Posta Schaan 24 
CHIME2 x CMB lensing, Pinsonneault-Marotte+in prep 
CIB lensing Schaan Ferraro Spergel 19 
LIM-pair lensing Doux Schaan+16, Schaan+18, Maniyar Schaan Pullen 21 
Direct LIM x CMB lensing Shen Kokron Schaan+25 

Astro colloquium next week: CMB secondary anisotropies 
kSZ, tSZ, lensing, etc. 
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CMB Galaxy surveys

Blanton, SDSSTegmark, WMAP3

The Universe as a fundamental Physics laboratory

~80% of volume uncharted!

Doré+15, SPHEREx

Intensity Mapping: 3D, high z 
➞ BAO, PNG, 𝜈, early DE, Astrophysics



Intensity Mapping = Impressionism (pointillism)

Théo van Rysselberghe 1887



Avoid noise biases and continuum foregrounds  
Beane Villaescusa-Navarro Lidz 19 

Remove line interlopers with line-line cross-correlations 
Cheng+20, Gong+20, Sun+21, Schaan White 21a 

Deproject any contaminant template (e.g., source catalog) 
Furlanetto+07, Lidz+09, Visbal+10,11,  and many more 

Higher signal-to-noise in cross-correlation for first detections 
Pen+08, Chang+10 

Test the matter-light relation 
Doux Schaan+16, Schaan+18, Maniyar Schaan Pullen 21 

(Need accurate model for cross-correlations) 
Schaan White 21a, b

IM challenges: cross-correlations will be crucial



Evidence: CHIME x eBOSS results

4 CHIME COLLABORATION

Figure 1. Map of the northern radio sky as measured by CHIME. Shown is the average spectral flux density over the 587.5�800MHz sub-
band. The hashed regions indicate the spatial footprints of the eBOSS catalogs. The LRG and QSO catalog share a common footprint indicated
by the light-pink, forward-slash hash marks. The footprint of the ELG catalog is indicated by the blue, circular hash marks. The eBOSS
catalogs are spread across two fields: the North Galactic Cap (NGC) and South Galactic Cap (SGC). We only present results for the NGC field
in this work. The color scale is linear between �1 and 1 Jy/beam and logarithmic otherwise. The map contains negative values because the
autocorrelation data have been excluded. The zero point is defined by setting the median value of a quiet part of the map with RA between 135
and 150 deg equal to zero for each declination and frequency prior to averaging over the sub-band.

2. DATA
2.1. CHIME

Our analysis uses the CHIME stack dataset acquired be-
tween January 1 and November 5, 2019. The stack dataset
is described in CHIME Collaboration et al. (2022a) and con-
sists of the N2

feed visibilities (with Nfeed = 2048) after they
have been integrated to �t = 9.9405 s cadence, calibrated
for complex gain variations, and compressed by averaging
subsets of redundant baselines. We selected 102 nights from
this period to include in the analysis, using criteria that will
be described in Section 3.3.1. After masking intervals of poor
data quality, these 102 nights contain 521 h of total integra-
tion time on the relevant eBOSS field.

CHIME is sensitive to radio frequencies from 400 to
800 MHz, which corresponds to 21 cm emission from red-
shifts 2.55 to 0.78. However, frequencies from 400 to
500 MHz suffer from frequent narrow-band, transient ra-
dio frequency interference (RFI). In addition, approximately
60 % of frequencies between 488 and 584 MHz are cor-
rupted by persistent RFI from locally broadcast TV channels.
Hence, for this initial analysis we have restricted our atten-
tion to the CHIME data acquired in the relatively clean por-
tion of the band between 587.5 and 800 MHz, corresponding
to 21 cm emission from redshifts 1.42 to 0.78. The spectral

resolution of the stack dataset is �⌫ = 0.390 625MHz,
resulting in 544 frequency channels within this range. We
anticipate that the real-time, RFI-excision algorithm that was
deployed on the CHIME correlator in mid-October 2019 and
recent improvements to the offline RFI excision algorithm
will enable the inclusion of the lower half of the CHIME
band in future analyses.

2.2. eBOSS catalogs
eBOSS (Dawson et al. 2016), the cosmological survey

within SDSS-IV (Blanton et al. 2017), was conducted over
4.5 years using spectrographs previously used for the BOSS
survey (Smee et al. 2013), mounted on the Sloan Telescope
(Gunn et al. 2006) at the Apache Point Observatory. eBOSS
produced four distinct samples of objects, each of which has
been used to measure large-scale clustering and place con-
straints on a variety of cosmological parameters (see Alam
et al. 2021 for a summary of these results). In this work, we
cross-correlate three of these samples, from SDSS Data Re-
lease 16 (Ahumada et al. 2020), with CHIME measurements.

The eBOSS emission line galaxy (ELG) sample (Raichoor
et al. 2021) selected targets using imaging from the Dark En-
ergy Camera Legacy Survey (Dey et al. 2019), making spe-
cial use of emission in the [OII] doublet at (�3727, �3729 Å)
to obtain efficient and accurate redshift estimates. This re-
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Figure 18. The stacked signal at �⌫ = 0MHz as a function of right ascension offset (��) and declination offset (�✓) for the QSO catalog.
The top row shows, from left to right, the data, best-fit model, and residual. The second row shows, from left to right, the result of stacking
the QSO catalog on a Gaussian noise realization, stacking the QSO catalog on a jackknife of even and odd days, and stacking a random mock
catalog on the data. The third row shows a slice of the data in black and best-fit model in red at �✓ = 0° on the left and �� = 0° on the right.
The bottom row shows, for these same slices, the residuals in black compared to the Gaussian noise realization in dark blue, the jackknife in
light blue, and the random mock catalog in orange. Note that to facilitate the comparison, the slices in the bottom row have been offset by an
amount indicated by the dotted line of the same color.

5-10σ detections 
z = 0.78 - 1.43

First interferometric cosmological 21cm detection! 

But at higher z, spectroscopic samples may no longer be available… 
➞ Use photometric samples / CMB?

CHIME collaboration 2022



DETECTION OF COSMOLOGICAL 21 CM EMISSION WITH 72EMIHC

Figure 13. Approximate physical scales probed by the stacking
measurements, as comoving wavenumbers along the line of sight
(k ) or transverse to it (k⊥). We evaluate the range of scales at three
observing frequencies that span the relevant portion of the CHIME
band. The accessible values ofk are determined by the CHIME
frequency channel width and delay filtering prescription, while the
ranges ofk⊥ arise from the synthesized beamwidth and choice to
exclude intracylinder baselines; see main text for details. The max-
ima of the first three BAO wiggles in the matter power spectrum are
shown by the grey lines, making it apparent that the measurements
in this work are insensitive to BAO scales, and instead mainly probe
the nonlinear regime of structure formation.

(CHIME Collaboration In Prep.), but preliminary results are
in good agreement with the estimates in Fig.13.
In this figure, we also show the maxima of the first three

BAO wiggles in the matter power spectrum, located at mul-
tiples ofkBAO = 2π/rdrag ≈ 0.064h−1Mpc. It is clear that
our delay filter and exclusion ofintracylinder baselines have
effectively filtered out any sensitivity to BAO scales from
our stacking measurements. The scales that remain are be-
yond the reach of analytical perturbative methods for large-
scale structure statistics in Fourier space (e.g.d’Amico et al.
2020; Ivanov et al. 2020; Chen et al. 2021b); while these
scales have some overlap with those accessible to hybrid
simulation-perturbation theory methods (e.g.Kokron et al.
2021), the majority of our signal-to-noise lies at ever smaller
scales, implying that we cannot immediately apply those
methods in our present analysis.
Halo-based models for HI (e.g. Padmanabhan2021) and

galaxy clustering can in principle describe the full range of
scales shown in Fig. 13. However, we have found that a

simpler model, which makes efficient use of our simulation
framework described in Section5.3, is fully capable of de-
scribing the observed signal while allowing for marginaliza-
tion over hard-to-predict properties of nonlinear clustering.
We describe this model and its application to our measure-
ments in the following subsections.

5.2. Signal Model
Cosmological modelling of the distribution of galax-

ies4 and HI typically begins with the matter overdensity
δm(x, z) ≡ [ρm(x, z) − ρ̄m(z)]/ρ̄m(z), where an overbar
denotes a spatial average. In our modelling we assume that
galaxies and HI are each linearly biased tracers of the total
matter density. The overdensity corresponding to galaxy or
HI number density,δg or δHI, can then be written in Fourier
space as

δX(k; z) = bX(z) + f(z)µ2 D̃FoG
X (kµ, z)δm(k, z)

+ X(z) (64)

with X ∈ [g,HI]. In Eq. ( 64), bX is the bias factor (as-
sumed to be scale-independent), and thef(z)µ2 term en-
codes the effect of redshift-space distortions at linear order
(Kaiser 1987), with f as the logarithmic growth rate and
µ ≡ k /k. We aim to capture the key non-linear contri-
butions to the two-point statistics of the fields: we include
real-space non-linear clustering inδm itself; the impact of
small-scale velocities on redshift-space observations (“Fin-
gers of God”; Jackson 1972) is modelled with the damping
functionD̃FoG

X ; and finally, we include a term X in Eq. ( 64),
which is uncorrelated withδm and represents the contribution
of shot noise toδX .
In our analysis we will only require the two point statistics

of the correlated fields. These are captured entirely by the
power spectrum of two fields:

PXY (k; zX , zY ) =

bX(zX) + f(zX)µ2 bY (zY ) + f(zY )µ
2

× D̃FoG
X (kµ, zX)D̃FoG

Y (kµ, zY )Pm(k; zX , zY )

+ P shot
XY (zX , zY ) . (65)

The ingredients required to complete our model are functions
for the non-linear matter power spectrumPm, the linear bias
bX , the Fingers of God functionD̃FoG

X , and the shot noise
P shot
XY . We discuss our fiducial choices for these ingredients

in the following sections.

5.2.1. Matter power spectrum

As input to our simulations, we use the halo model pre-
diction for the nonlinear matter power spectrum fromMead
et al. (2021), as implemented in theCAMBcode (Lewis et al.
2000). We have also considered the Halofit fitting functions

4 For brevity, we refer to ELGs, LRGs, and QSOs as “galaxies” in this sec-
tion.

k k
⇠

1/
⌫

k? ⇠ 1/✓

Missing modes hamper cross-correlations 
& hide cosmological signal
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Figure 13. Approximate physical scales probed by the stacking
measurements, as comoving wavenumbers along the line of sight
(k ) or transverse to it (k⊥). We evaluate the range of scales at three
observing frequencies that span the relevant portion of the CHIME
band. The accessible values ofk are determined by the CHIME
frequency channel width and delay filtering prescription, while the
ranges ofk⊥ arise from the synthesized beamwidth and choice to
exclude intracylinder baselines; see main text for details. The max-
ima of the first three BAO wiggles in the matter power spectrum are
shown by the grey lines, making it apparent that the measurements
in this work are insensitive to BAO scales, and instead mainly probe
the nonlinear regime of structure formation.

(CHIME Collaboration In Prep.), but preliminary results are
in good agreement with the estimates in Fig.13.
In this figure, we also show the maxima of the first three

BAO wiggles in the matter power spectrum, located at mul-
tiples ofkBAO = 2π/rdrag ≈ 0.064h−1Mpc. It is clear that
our delay filter and exclusion ofintracylinder baselines have
effectively filtered out any sensitivity to BAO scales from
our stacking measurements. The scales that remain are be-
yond the reach of analytical perturbative methods for large-
scale structure statistics in Fourier space (e.g.d’Amico et al.
2020; Ivanov et al. 2020; Chen et al. 2021b); while these
scales have some overlap with those accessible to hybrid
simulation-perturbation theory methods (e.g.Kokron et al.
2021), the majority of our signal-to-noise lies at ever smaller
scales, implying that we cannot immediately apply those
methods in our present analysis.
Halo-based models for HI (e.g. Padmanabhan2021) and

galaxy clustering can in principle describe the full range of
scales shown in Fig. 13. However, we have found that a

simpler model, which makes efficient use of our simulation
framework described in Section5.3, is fully capable of de-
scribing the observed signal while allowing for marginaliza-
tion over hard-to-predict properties of nonlinear clustering.
We describe this model and its application to our measure-
ments in the following subsections.

5.2. Signal Model
Cosmological modelling of the distribution of galax-

ies4 and HI typically begins with the matter overdensity
δm(x, z) ≡ [ρm(x, z) − ρ̄m(z)]/ρ̄m(z), where an overbar
denotes a spatial average. In our modelling we assume that
galaxies and HI are each linearly biased tracers of the total
matter density. The overdensity corresponding to galaxy or
HI number density,δg or δHI, can then be written in Fourier
space as

δX(k; z) = bX(z) + f(z)µ2 D̃FoG
X (kµ, z)δm(k, z)

+ X(z) (64)

with X ∈ [g,HI]. In Eq. ( 64), bX is the bias factor (as-
sumed to be scale-independent), and thef(z)µ2 term en-
codes the effect of redshift-space distortions at linear order
(Kaiser 1987), with f as the logarithmic growth rate and
µ ≡ k /k. We aim to capture the key non-linear contri-
butions to the two-point statistics of the fields: we include
real-space non-linear clustering inδm itself; the impact of
small-scale velocities on redshift-space observations (“Fin-
gers of God”; Jackson 1972) is modelled with the damping
functionD̃FoG

X ; and finally, we include a term X in Eq. ( 64),
which is uncorrelated withδm and represents the contribution
of shot noise toδX .
In our analysis we will only require the two point statistics

of the correlated fields. These are captured entirely by the
power spectrum of two fields:

PXY (k; zX , zY ) =

bX(zX) + f(zX)µ2 bY (zY ) + f(zY )µ
2

× D̃FoG
X (kµ, zX)D̃FoG

Y (kµ, zY )Pm(k; zX , zY )

+ P shot
XY (zX , zY ) . (65)

The ingredients required to complete our model are functions
for the non-linear matter power spectrumPm, the linear bias
bX , the Fingers of God functionD̃FoG

X , and the shot noise
P shot
XY . We discuss our fiducial choices for these ingredients

in the following sections.

5.2.1. Matter power spectrum

As input to our simulations, we use the halo model pre-
diction for the nonlinear matter power spectrum fromMead
et al. (2021), as implemented in theCAMBcode (Lewis et al.
2000). We have also considered the Halofit fitting functions

4 For brevity, we refer to ELGs, LRGs, and QSOs as “galaxies” in this sec-
tion.
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Figure 13. Approximate physical scales probed by the stacking
measurements, as comoving wavenumbers along the line of sight
(k ) or transverse to it (k⊥). We evaluate the range of scales at three
observing frequencies that span the relevant portion of the CHIME
band. The accessible values ofk are determined by the CHIME
frequency channel width and delay filtering prescription, while the
ranges ofk⊥ arise from the synthesized beamwidth and choice to
exclude intracylinder baselines; see main text for details. The max-
ima of the first three BAO wiggles in the matter power spectrum are
shown by the grey lines, making it apparent that the measurements
in this work are insensitive to BAO scales, and instead mainly probe
the nonlinear regime of structure formation.

(CHIME Collaboration In Prep.), but preliminary results are
in good agreement with the estimates in Fig.13.
In this figure, we also show the maxima of the first three

BAO wiggles in the matter power spectrum, located at mul-
tiples ofkBAO = 2π/rdrag ≈ 0.064h−1Mpc. It is clear that
our delay filter and exclusion ofintracylinder baselines have
effectively filtered out any sensitivity to BAO scales from
our stacking measurements. The scales that remain are be-
yond the reach of analytical perturbative methods for large-
scale structure statistics in Fourier space (e.g.d’Amico et al.
2020; Ivanov et al. 2020; Chen et al. 2021b); while these
scales have some overlap with those accessible to hybrid
simulation-perturbation theory methods (e.g.Kokron et al.
2021), the majority of our signal-to-noise lies at ever smaller
scales, implying that we cannot immediately apply those
methods in our present analysis.
Halo-based models for HI (e.g. Padmanabhan2021) and

galaxy clustering can in principle describe the full range of
scales shown in Fig. 13. However, we have found that a

simpler model, which makes efficient use of our simulation
framework described in Section5.3, is fully capable of de-
scribing the observed signal while allowing for marginaliza-
tion over hard-to-predict properties of nonlinear clustering.
We describe this model and its application to our measure-
ments in the following subsections.

5.2. Signal Model
Cosmological modelling of the distribution of galax-

ies4 and HI typically begins with the matter overdensity
δm(x, z) ≡ [ρm(x, z) − ρ̄m(z)]/ρ̄m(z), where an overbar
denotes a spatial average. In our modelling we assume that
galaxies and HI are each linearly biased tracers of the total
matter density. The overdensity corresponding to galaxy or
HI number density,δg or δHI, can then be written in Fourier
space as

δX(k; z) = bX(z) + f(z)µ2 D̃FoG
X (kµ, z)δm(k, z)

+ X(z) (64)

with X ∈ [g,HI]. In Eq. ( 64), bX is the bias factor (as-
sumed to be scale-independent), and thef(z)µ2 term en-
codes the effect of redshift-space distortions at linear order
(Kaiser 1987), with f as the logarithmic growth rate and
µ ≡ k /k. We aim to capture the key non-linear contri-
butions to the two-point statistics of the fields: we include
real-space non-linear clustering inδm itself; the impact of
small-scale velocities on redshift-space observations (“Fin-
gers of God”; Jackson 1972) is modelled with the damping
functionD̃FoG

X ; and finally, we include a term X in Eq. ( 64),
which is uncorrelated withδm and represents the contribution
of shot noise toδX .
In our analysis we will only require the two point statistics

of the correlated fields. These are captured entirely by the
power spectrum of two fields:

PXY (k; zX , zY ) =

bX(zX) + f(zX)µ2 bY (zY ) + f(zY )µ
2

× D̃FoG
X (kµ, zX)D̃FoG

Y (kµ, zY )Pm(k; zX , zY )

+ P shot
XY (zX , zY ) . (65)

The ingredients required to complete our model are functions
for the non-linear matter power spectrumPm, the linear bias
bX , the Fingers of God functionD̃FoG

X , and the shot noise
P shot
XY . We discuss our fiducial choices for these ingredients

in the following sections.

5.2.1. Matter power spectrum

As input to our simulations, we use the halo model pre-
diction for the nonlinear matter power spectrum fromMead
et al. (2021), as implemented in theCAMBcode (Lewis et al.
2000). We have also considered the Halofit fitting functions

4 For brevity, we refer to ELGs, LRGs, and QSOs as “galaxies” in this sec-
tion.
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Figure 29. Map of the northern radio sky constructed from data collected by CHIME over 52 nights and stacked. This is a deconvolved Stokes
I = (XX + Y Y )/2 ringmap obtained from all XX and YY visibilities using the stacked data, plotted in celestial coordinates in a plate Carèe
projection. The image shows most of the northern sky, oriented in the conventional way for astronomical images with right ascension increasing
to the left (unlike Fig. 28).

‘

Figure 30. Stokes I maps of the Galactic plane from the Canadian Galactic Plane Survey at 408MHz (CGPS, top panel; Tung et al. 2017) and
CHIME at 679MHz (bottom panel; same data as in Fig. 29) in Galactic coordinates.

CGPS map is also clearly discernible in the CHIME map.
This is especially true of the bright extended emission at
the low-longitude end of the CGPS coverage. The bright
radio sources, Cyg A and Cas A, produce artifacts in both
the CHIME and CGPS maps, although these are more eas-
ily mitigated in the CGPS through mosaicing of fields with
a sufficiently dense sampling of pointings in those regions.
While CHIME does not match the high angular resolution
of the CGPS, its spectral coverage far exceeds that of the
CGPS7, allowing for more in-depth exploration of frequency-

7 The CGPS has a bandwidth of 3.5MHz at 408MHz, and a bandwidth of
35MHz at 1420MHz.

dependent phenomena in the Galaxy over a larger spatial ex-
tent.

Sky maps like these will be the main data product for sci-
ence involving non-cosmological foregrounds. We will have
all-sky images at hundreds of frequencies across an octave
obtained with the same telescope, allowing analyses of spec-
tral indices of point sources, extended objects, and diffuse
emission. The Galactic signal is dominated by synchrotron
emission, linearly polarized at its source, and Faraday rotated
by the intervening magneto-ionic medium along virtually ev-
ery line of sight. A major scientific goal is to apply Fara-
day synthesis (Brentjens & de Bruyn 2005) to the polariza-
tion data. We will derive Stokes Q and U maps, which will
provide a valuable dataset for Faraday synthesis across the

Intensity Mapping

Missing modes hamper cross-correlations 
& hide cosmological signal

CHIME collaboration 2022
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Figure 13. Approximate physical scales probed by the stacking
measurements, as comoving wavenumbers along the line of sight
(k ) or transverse to it (k⊥). We evaluate the range of scales at three
observing frequencies that span the relevant portion of the CHIME
band. The accessible values ofk are determined by the CHIME
frequency channel width and delay filtering prescription, while the
ranges ofk⊥ arise from the synthesized beamwidth and choice to
exclude intracylinder baselines; see main text for details. The max-
ima of the first three BAO wiggles in the matter power spectrum are
shown by the grey lines, making it apparent that the measurements
in this work are insensitive to BAO scales, and instead mainly probe
the nonlinear regime of structure formation.

(CHIME Collaboration In Prep.), but preliminary results are
in good agreement with the estimates in Fig.13.
In this figure, we also show the maxima of the first three

BAO wiggles in the matter power spectrum, located at mul-
tiples ofkBAO = 2π/rdrag ≈ 0.064h−1Mpc. It is clear that
our delay filter and exclusion ofintracylinder baselines have
effectively filtered out any sensitivity to BAO scales from
our stacking measurements. The scales that remain are be-
yond the reach of analytical perturbative methods for large-
scale structure statistics in Fourier space (e.g.d’Amico et al.
2020; Ivanov et al. 2020; Chen et al. 2021b); while these
scales have some overlap with those accessible to hybrid
simulation-perturbation theory methods (e.g.Kokron et al.
2021), the majority of our signal-to-noise lies at ever smaller
scales, implying that we cannot immediately apply those
methods in our present analysis.
Halo-based models for HI (e.g. Padmanabhan2021) and

galaxy clustering can in principle describe the full range of
scales shown in Fig. 13. However, we have found that a

simpler model, which makes efficient use of our simulation
framework described in Section5.3, is fully capable of de-
scribing the observed signal while allowing for marginaliza-
tion over hard-to-predict properties of nonlinear clustering.
We describe this model and its application to our measure-
ments in the following subsections.

5.2. Signal Model
Cosmological modelling of the distribution of galax-

ies4 and HI typically begins with the matter overdensity
δm(x, z) ≡ [ρm(x, z) − ρ̄m(z)]/ρ̄m(z), where an overbar
denotes a spatial average. In our modelling we assume that
galaxies and HI are each linearly biased tracers of the total
matter density. The overdensity corresponding to galaxy or
HI number density,δg or δHI, can then be written in Fourier
space as

δX(k; z) = bX(z) + f(z)µ2 D̃FoG
X (kµ, z)δm(k, z)

+ X(z) (64)

with X ∈ [g,HI]. In Eq. ( 64), bX is the bias factor (as-
sumed to be scale-independent), and thef(z)µ2 term en-
codes the effect of redshift-space distortions at linear order
(Kaiser 1987), with f as the logarithmic growth rate and
µ ≡ k /k. We aim to capture the key non-linear contri-
butions to the two-point statistics of the fields: we include
real-space non-linear clustering inδm itself; the impact of
small-scale velocities on redshift-space observations (“Fin-
gers of God”; Jackson 1972) is modelled with the damping
functionD̃FoG

X ; and finally, we include a term X in Eq. ( 64),
which is uncorrelated withδm and represents the contribution
of shot noise toδX .
In our analysis we will only require the two point statistics

of the correlated fields. These are captured entirely by the
power spectrum of two fields:

PXY (k; zX , zY ) =

bX(zX) + f(zX)µ2 bY (zY ) + f(zY )µ
2

× D̃FoG
X (kµ, zX)D̃FoG

Y (kµ, zY )Pm(k; zX , zY )

+ P shot
XY (zX , zY ) . (65)

The ingredients required to complete our model are functions
for the non-linear matter power spectrumPm, the linear bias
bX , the Fingers of God functionD̃FoG

X , and the shot noise
P shot
XY . We discuss our fiducial choices for these ingredients

in the following sections.

5.2.1. Matter power spectrum

As input to our simulations, we use the halo model pre-
diction for the nonlinear matter power spectrum fromMead
et al. (2021), as implemented in theCAMBcode (Lewis et al.
2000). We have also considered the Halofit fitting functions

4 For brevity, we refer to ELGs, LRGs, and QSOs as “galaxies” in this sec-
tion.
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Figure 13. Approximate physical scales probed by the stacking
measurements, as comoving wavenumbers along the line of sight
(k ) or transverse to it (k⊥). We evaluate the range of scales at three
observing frequencies that span the relevant portion of the CHIME
band. The accessible values ofk are determined by the CHIME
frequency channel width and delay filtering prescription, while the
ranges ofk⊥ arise from the synthesized beamwidth and choice to
exclude intracylinder baselines; see main text for details. The max-
ima of the first three BAO wiggles in the matter power spectrum are
shown by the grey lines, making it apparent that the measurements
in this work are insensitive to BAO scales, and instead mainly probe
the nonlinear regime of structure formation.

(CHIME Collaboration In Prep.), but preliminary results are
in good agreement with the estimates in Fig.13.
In this figure, we also show the maxima of the first three

BAO wiggles in the matter power spectrum, located at mul-
tiples ofkBAO = 2π/rdrag ≈ 0.064h−1Mpc. It is clear that
our delay filter and exclusion ofintracylinder baselines have
effectively filtered out any sensitivity to BAO scales from
our stacking measurements. The scales that remain are be-
yond the reach of analytical perturbative methods for large-
scale structure statistics in Fourier space (e.g.d’Amico et al.
2020; Ivanov et al. 2020; Chen et al. 2021b); while these
scales have some overlap with those accessible to hybrid
simulation-perturbation theory methods (e.g.Kokron et al.
2021), the majority of our signal-to-noise lies at ever smaller
scales, implying that we cannot immediately apply those
methods in our present analysis.
Halo-based models for HI (e.g. Padmanabhan2021) and

galaxy clustering can in principle describe the full range of
scales shown in Fig. 13. However, we have found that a

simpler model, which makes efficient use of our simulation
framework described in Section5.3, is fully capable of de-
scribing the observed signal while allowing for marginaliza-
tion over hard-to-predict properties of nonlinear clustering.
We describe this model and its application to our measure-
ments in the following subsections.

5.2. Signal Model
Cosmological modelling of the distribution of galax-

ies4 and HI typically begins with the matter overdensity
δm(x, z) ≡ [ρm(x, z) − ρ̄m(z)]/ρ̄m(z), where an overbar
denotes a spatial average. In our modelling we assume that
galaxies and HI are each linearly biased tracers of the total
matter density. The overdensity corresponding to galaxy or
HI number density,δg or δHI, can then be written in Fourier
space as

δX(k; z) = bX(z) + f(z)µ2 D̃FoG
X (kµ, z)δm(k, z)

+ X(z) (64)

with X ∈ [g,HI]. In Eq. ( 64), bX is the bias factor (as-
sumed to be scale-independent), and thef(z)µ2 term en-
codes the effect of redshift-space distortions at linear order
(Kaiser 1987), with f as the logarithmic growth rate and
µ ≡ k /k. We aim to capture the key non-linear contri-
butions to the two-point statistics of the fields: we include
real-space non-linear clustering inδm itself; the impact of
small-scale velocities on redshift-space observations (“Fin-
gers of God”; Jackson 1972) is modelled with the damping
functionD̃FoG

X ; and finally, we include a term X in Eq. ( 64),
which is uncorrelated withδm and represents the contribution
of shot noise toδX .
In our analysis we will only require the two point statistics

of the correlated fields. These are captured entirely by the
power spectrum of two fields:

PXY (k; zX , zY ) =

bX(zX) + f(zX)µ2 bY (zY ) + f(zY )µ
2

× D̃FoG
X (kµ, zX)D̃FoG

Y (kµ, zY )Pm(k; zX , zY )

+ P shot
XY (zX , zY ) . (65)

The ingredients required to complete our model are functions
for the non-linear matter power spectrumPm, the linear bias
bX , the Fingers of God functionD̃FoG

X , and the shot noise
P shot
XY . We discuss our fiducial choices for these ingredients

in the following sections.

5.2.1. Matter power spectrum

As input to our simulations, we use the halo model pre-
diction for the nonlinear matter power spectrum fromMead
et al. (2021), as implemented in theCAMBcode (Lewis et al.
2000). We have also considered the Halofit fitting functions

4 For brevity, we refer to ELGs, LRGs, and QSOs as “galaxies” in this sec-
tion.
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Figure 8. 2D slices through the 3D primary beam models. We show the power beam for the Y polarisation array. The top row is the default
beam model, obtained by deconvolving a model for the radio emission from extragalactic point sources from the visibilities measured with long
east-west baselines. The bottom row is the control beam model, which has similar global properties as the default, but without the small-scale
spectral structure. Left: beam model as a function of declination and frequency on the meridian (hour angle = 0.0°). The declination axis is
uniformly spaced in the sine of the zenith angle. The region to the right of the north celestial pole (NCP) annotation corresponds to the antipodal
transit at hour angle = 180°. Middle: beam model as a function of hour angle and frequency at a declination of 36.0°. Right: beam model as a
function of hour angle and declination at 700MHz. The region above the NCP annotation corresponds to the antipodal transit at hour angles
given by the upper x-axis. The beam has been normalized to 1.0 on meridian at the declination of Cygnus A (40.733 92°) at each frequency
in order to match how the data are normalized by the calibration procedure. The gray band denotes frequencies where we do not have a valid
model for the beam due to persistent RFI in mobile LTE bands.

the east-west direction is assumed to be polarisation depen-
dent, but frequency independent, and is obtained by perform-
ing a fit to holographic observations of several bright sources
made in conjuction with the John A. Galt 26 m telescope (see
CHIME Collaboration et al. (2022a) for a description of these
measurements). The FWHM of the base beam in the north-
south direction is assumed to be polarisation and frequency
dependent, and is obtained by fitting a flattened Gaussian to
the meridian profile of the default beam at each frequency,
and then fitting the resulting FWHM as a function of fre-
quency to a third-order polynomial in order to smooth over
the small-scale ripples while retaining large-scale variations
observed in the width of the meridian beam with frequency.
The rest of the procedure is unchanged: the beam model is
given by the outer product of an east-west response obtained
by solving the Fraunhofer diffraction problem and a north-
south response obtained from the reflected base-beam ampli-
tude. The resulting beam model is shown in the bottom row
of Fig. 8.

4.5. Foreground filtering
The deconvolved map described in Section 4.3 is domi-

nated by emission from extragalactic point sources, which
is expected to be a factor of ⇠ 10

3 � 10
5 brighter than the

21 cm signal of interest (Santos et al. 2005). This foreground
contamination can be separated from the 21 cm signal on the
basis of spectral scale; the foregrounds are expected to be
spectrally smooth, whereas the 21 cm signal varies rapidly
with frequency (Shaver et al. 1999; Oh & Mack 2003; Liu &
Tegmark 2011). For each pixel in the map, we apply a high-
pass filter along the frequency axis to supress the foregrounds
while retaining some fraction of the 21 cm signal.

Designing an adequate filter is complicated by the fact that
– as discussed in Section 4.2 – 47.2 % of the band has been
masked in order to remove RFI-like features and other nar-
rowband, instrumental artifacts. The DAYENU technique
(Ewall-Wice et al. 2021) is used to construct a linear filter
for the irregularly-sampled map spectra that achieves the re-
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tude. The resulting beam model is shown in the bottom row
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Tegmark 2011). For each pixel in the map, we apply a high-
pass filter along the frequency axis to supress the foregrounds
while retaining some fraction of the 21 cm signal.

Designing an adequate filter is complicated by the fact that
– as discussed in Section 4.2 – 47.2 % of the band has been
masked in order to remove RFI-like features and other nar-
rowband, instrumental artifacts. The DAYENU technique
(Ewall-Wice et al. 2021) is used to construct a linear filter
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Figure 13. Approximate physical scales probed by the stacking
measurements, as comoving wavenumbers along the line of sight
(k ) or transverse to it (k⊥). We evaluate the range of scales at three
observing frequencies that span the relevant portion of the CHIME
band. The accessible values ofk are determined by the CHIME
frequency channel width and delay filtering prescription, while the
ranges ofk⊥ arise from the synthesized beamwidth and choice to
exclude intracylinder baselines; see main text for details. The max-
ima of the first three BAO wiggles in the matter power spectrum are
shown by the grey lines, making it apparent that the measurements
in this work are insensitive to BAO scales, and instead mainly probe
the nonlinear regime of structure formation.

(CHIME Collaboration In Prep.), but preliminary results are
in good agreement with the estimates in Fig.13.
In this figure, we also show the maxima of the first three

BAO wiggles in the matter power spectrum, located at mul-
tiples ofkBAO = 2π/rdrag ≈ 0.064h−1Mpc. It is clear that
our delay filter and exclusion ofintracylinder baselines have
effectively filtered out any sensitivity to BAO scales from
our stacking measurements. The scales that remain are be-
yond the reach of analytical perturbative methods for large-
scale structure statistics in Fourier space (e.g.d’Amico et al.
2020; Ivanov et al. 2020; Chen et al. 2021b); while these
scales have some overlap with those accessible to hybrid
simulation-perturbation theory methods (e.g.Kokron et al.
2021), the majority of our signal-to-noise lies at ever smaller
scales, implying that we cannot immediately apply those
methods in our present analysis.
Halo-based models for HI (e.g. Padmanabhan2021) and

galaxy clustering can in principle describe the full range of
scales shown in Fig. 13. However, we have found that a

simpler model, which makes efficient use of our simulation
framework described in Section5.3, is fully capable of de-
scribing the observed signal while allowing for marginaliza-
tion over hard-to-predict properties of nonlinear clustering.
We describe this model and its application to our measure-
ments in the following subsections.

5.2. Signal Model
Cosmological modelling of the distribution of galax-

ies4 and HI typically begins with the matter overdensity
δm(x, z) ≡ [ρm(x, z) − ρ̄m(z)]/ρ̄m(z), where an overbar
denotes a spatial average. In our modelling we assume that
galaxies and HI are each linearly biased tracers of the total
matter density. The overdensity corresponding to galaxy or
HI number density,δg or δHI, can then be written in Fourier
space as

δX(k; z) = bX(z) + f(z)µ2 D̃FoG
X (kµ, z)δm(k, z)

+ X(z) (64)

with X ∈ [g,HI]. In Eq. ( 64), bX is the bias factor (as-
sumed to be scale-independent), and thef(z)µ2 term en-
codes the effect of redshift-space distortions at linear order
(Kaiser 1987), with f as the logarithmic growth rate and
µ ≡ k /k. We aim to capture the key non-linear contri-
butions to the two-point statistics of the fields: we include
real-space non-linear clustering inδm itself; the impact of
small-scale velocities on redshift-space observations (“Fin-
gers of God”; Jackson 1972) is modelled with the damping
functionD̃FoG

X ; and finally, we include a term X in Eq. ( 64),
which is uncorrelated withδm and represents the contribution
of shot noise toδX .
In our analysis we will only require the two point statistics

of the correlated fields. These are captured entirely by the
power spectrum of two fields:

PXY (k; zX , zY ) =

bX(zX) + f(zX)µ2 bY (zY ) + f(zY )µ
2

× D̃FoG
X (kµ, zX)D̃FoG

Y (kµ, zY )Pm(k; zX , zY )

+ P shot
XY (zX , zY ) . (65)

The ingredients required to complete our model are functions
for the non-linear matter power spectrumPm, the linear bias
bX , the Fingers of God functionD̃FoG

X , and the shot noise
P shot
XY . We discuss our fiducial choices for these ingredients

in the following sections.

5.2.1. Matter power spectrum

As input to our simulations, we use the halo model pre-
diction for the nonlinear matter power spectrum fromMead
et al. (2021), as implemented in theCAMBcode (Lewis et al.
2000). We have also considered the Halofit fitting functions

4 For brevity, we refer to ELGs, LRGs, and QSOs as “galaxies” in this sec-
tion.
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Figure 13. Approximate physical scales probed by the stacking
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(k ) or transverse to it (k⊥). We evaluate the range of scales at three
observing frequencies that span the relevant portion of the CHIME
band. The accessible values ofk are determined by the CHIME
frequency channel width and delay filtering prescription, while the
ranges ofk⊥ arise from the synthesized beamwidth and choice to
exclude intracylinder baselines; see main text for details. The max-
ima of the first three BAO wiggles in the matter power spectrum are
shown by the grey lines, making it apparent that the measurements
in this work are insensitive to BAO scales, and instead mainly probe
the nonlinear regime of structure formation.

(CHIME Collaboration In Prep.), but preliminary results are
in good agreement with the estimates in Fig.13.
In this figure, we also show the maxima of the first three

BAO wiggles in the matter power spectrum, located at mul-
tiples ofkBAO = 2π/rdrag ≈ 0.064h−1Mpc. It is clear that
our delay filter and exclusion ofintracylinder baselines have
effectively filtered out any sensitivity to BAO scales from
our stacking measurements. The scales that remain are be-
yond the reach of analytical perturbative methods for large-
scale structure statistics in Fourier space (e.g.d’Amico et al.
2020; Ivanov et al. 2020; Chen et al. 2021b); while these
scales have some overlap with those accessible to hybrid
simulation-perturbation theory methods (e.g.Kokron et al.
2021), the majority of our signal-to-noise lies at ever smaller
scales, implying that we cannot immediately apply those
methods in our present analysis.
Halo-based models for HI (e.g. Padmanabhan2021) and

galaxy clustering can in principle describe the full range of
scales shown in Fig. 13. However, we have found that a

simpler model, which makes efficient use of our simulation
framework described in Section5.3, is fully capable of de-
scribing the observed signal while allowing for marginaliza-
tion over hard-to-predict properties of nonlinear clustering.
We describe this model and its application to our measure-
ments in the following subsections.

5.2. Signal Model
Cosmological modelling of the distribution of galax-

ies4 and HI typically begins with the matter overdensity
δm(x, z) ≡ [ρm(x, z) − ρ̄m(z)]/ρ̄m(z), where an overbar
denotes a spatial average. In our modelling we assume that
galaxies and HI are each linearly biased tracers of the total
matter density. The overdensity corresponding to galaxy or
HI number density,δg or δHI, can then be written in Fourier
space as

δX(k; z) = bX(z) + f(z)µ2 D̃FoG
X (kµ, z)δm(k, z)

+ X(z) (64)

with X ∈ [g,HI]. In Eq. ( 64), bX is the bias factor (as-
sumed to be scale-independent), and thef(z)µ2 term en-
codes the effect of redshift-space distortions at linear order
(Kaiser 1987), with f as the logarithmic growth rate and
µ ≡ k /k. We aim to capture the key non-linear contri-
butions to the two-point statistics of the fields: we include
real-space non-linear clustering inδm itself; the impact of
small-scale velocities on redshift-space observations (“Fin-
gers of God”; Jackson 1972) is modelled with the damping
functionD̃FoG

X ; and finally, we include a term X in Eq. ( 64),
which is uncorrelated withδm and represents the contribution
of shot noise toδX .
In our analysis we will only require the two point statistics

of the correlated fields. These are captured entirely by the
power spectrum of two fields:

PXY (k; zX , zY ) =

bX(zX) + f(zX)µ2 bY (zY ) + f(zY )µ
2

× D̃FoG
X (kµ, zX)D̃FoG

Y (kµ, zY )Pm(k; zX , zY )

+ P shot
XY (zX , zY ) . (65)

The ingredients required to complete our model are functions
for the non-linear matter power spectrumPm, the linear bias
bX , the Fingers of God functionD̃FoG

X , and the shot noise
P shot
XY . We discuss our fiducial choices for these ingredients

in the following sections.

5.2.1. Matter power spectrum

As input to our simulations, we use the halo model pre-
diction for the nonlinear matter power spectrum fromMead
et al. (2021), as implemented in theCAMBcode (Lewis et al.
2000). We have also considered the Halofit fitting functions

4 For brevity, we refer to ELGs, LRGs, and QSOs as “galaxies” in this sec-
tion.
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Tidal reconstruction: growth & dilation from gravitational nonlinearities 
Hamilton+06, Baldauf Seljak+11, de Putter+12, Sherwin+12, Li+14, Chiang+14, Schaan Takada Spergel 14, Doux Schaan+16, Foreman+18, La 
Posta Schaan 24 

 
Lensing reconstruction: magnification & shear 
Pen 04, Cooray 04, Zhang+ 05,06,11, Zahn Zaldarriaga 06, Metcalf White 07, Lu Pen 07, Portsidou Metcalf 13, Croft+17, Metcalf+17, 
Schaan Ferraro Spergel 18, Foreman+18, Chakraborty Pullen 19, Schaan Ferraro 19, Maniyar Schaan Pullen 21 

Reconstructing large scales: position-dependent power spectrum
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Weak lensing and higher-point statistics / Simon Foreman

Forecasts for 21cm surveys

S/N on lensing or tidal reconstruction power spectra
z width of fsky hi hgLSSTi h�LSSTi

each band
[MHz]

SKA1-Low 6 < z < 14 5 27 deg2 3.6 26 13
CHIME 1.1 < z < 2.5 25 0.5 0.25 34 27
HIRAX 1.35 < z < 2.5 25 0.5 0.93 45 34

TABLE V. fel.

S/N on lensing or tidal reconstruction power spectra
quantity / experiment CMB S4 21-cm-S2, 21-cm-S2,

no wedge with wedge
Lensing ⇥ LSST galaxies 367 676 358

Lensing ⇥ LSST shear 178 367 173
Lensing auto 353 216 8

Tidal reconstruction auto - 2240 266

TABLE VI. Total signal to noise on measurements of auto or cross power spectra related to gravitational lensing of 21-cm maps. We expect
cross-correlations of 21-cm lensing with LSST galaxy clustering or cosmic shear (galaxy lensing) to be measured at a precision competitive
with that of cross-correlations with CMB-S4 lensing, with the advantage that the former will contain much more (tomographic) information
about the growth of low-redshift structure. The lensing auto spectrum will be more challenging, due to confounding effects from nonlinear
clustering in the 21-cm maps [177]. However, these same effects are sensitive to the power spectrum of long density modes at the source
redshift, which can be “tidally reconstructed” using similar estimators [177, 180–183]. These measurements can be made very precisely with
our fiducial 21-cm instrument, even in the presence of foregrounds.

measurement noncompetitive with CMB-S4, even if the foreground wedge can be completely cleaned. Meanwhile, the power831

spectra of long density modes in each redshift bin can likely be accessed with very high precision, with a total signal to noise of832

several hundred regardless of the foreground wedge, opening the door the a multitude of cross-correlation science.833

The signal-to-noise in these measurements is impressive. Following through with these predictions all the way to their impli-834

cations for cosmological parameters goes beyond the scope of this white paper, because its main strength will come in particular835

through interaction of cross-correlations which require assumptions about the existence of other experiments. However, this is a836

very promising direction to pursue, and warrants further investigations.837

2.10. Basic cosmological parameters: neutrino mass, radiation density, dark energy equations of state838

As a natural by-product of measuring the expansion history and precise shape of the power spectrum, we can perform global839

fits to the observed data in order to improve constraints on some standard and interesting cosmological parameters. While840

expansion history is directly sensitive to any of the parameters discussed below, it breaks degeneracies with other parameters,841

that can, in combination with standard datasets such as Planck, often improve results considerably. The shape of the power842

spectrum depends coarsely on the matter density ⌦m and the epoch of the matter-radiation equality through their dependence on843

T (k). Additionally, distances in the universe affect the conversion between observed power spectrum (measured in angles and844

redshifts) and comoving power spectrum (measured in inverse comoving distance units), effect known as Alcock-Paczyinski test845

[184]. In practice, redshift-space distortion obscure some of these effects.846

In particular, we believe we can provide interesting additional information on:847

Neutrino mass. Cosmology is sensitive to the sum of neutrino mass eigen-states m⌫ =
P

mi. We know, from the neutrino848

oscillation experiments that the minimum value of m⌫ ⇠ 0.06eV in the normal hierarchy and m⌫ ⇠ 0.12eV in the inverted849

hierarchy. [AS:Add cites] Massive neutrinos affect the expansion history of the universe, but the effect is small. Moreover, they850

free-stream out of small scales density perturbations, making the field slightly smoother on scales smaller than free-streaming851

length. Their effect can be detected through a particular scale-dependence of the power spectrum between large and small scales,852

although this usual takes the form of comparing fluctuation power measured by CMB with fluctuation power measured at low853

redshift. For extensive review site citecite. The general expectation is that neutrino mass will be detected in the coming years854

using a number of related methods. In conjuction with standard CMB, DESI should detect it using redshift-space distortions,855

LSST using weak gravitational lensing of galaxies and CMB-S4 using weak gravitational lensing of background radiation. We856

expect 21-cm Stage 2 to improve in all of the above methods. MW: Really? How?857

Energy density of radiation. The amount of radiation in the early universe is usually parameterised by the effective number858

29

lensing auto

lensing x ~LSST g
lensing x ~LSST shear

tidal rec. auto

CMB-S4: assumed 1’ beam, fsky = 0.4, noise = 2μK-arcmin

21cm-S2: 2 < z < 6, 256 x 256 6m dishes, 5 years
• Generally, strongest signal from highest z
• No need to bias-harden in cross-correlations

These methods are promising!

Foreman+18, Ansari+19



Tidal reconstruction for Ly-⍺ forest:  
Enabling cross-correlation with CMB lensing

2

FIG. 1. Schematic of the correlation: overdense regions (re-
spectively underdense regions), in red on the top panel (blue
on the bottom panel) have positive (negative) CMB lensing
convergence and are expected to produce more (less) small-
scale structures under non-linear gravitational evolution,
which is detectable in the amplitude of the Lyman- α forest
power spectrum. The extent of the aforementioned regions
is determined by the angular resolution θWF of the Wiener-
filtered convergence map and depth of the lensing e fficiency
function. In this analysis, we select Lyman- α forests in the
redshift range 2 .1 − 3.6.

scales, due to non-linear evolution under gravity [20–22]
(see Fig. 1 for a schematic of this idea). This bispectrum
would therefore vanish at linear order in the perturbation
theory of the density field, where short and long modes
are independent. Instead, for a non-linear density field,
this signal probes the response of Lyman- α the power
spectrum to a mean overdensity.
This method was proposed in [23–25]. In this Letter,

we present the first detection of this signal, and propose
a new theoretical description ofi t, based on the response
of the matter power spectrum to a mean overdensity.

THEORY

We aim at evaluating the covariance between
the one-dimensional power spectrum P 1d

Ly α (k ) of the
Lyman- α forest transmission on one line of sight and the
CMB convergence κ on the same line of sight.
The CMB lensing convergence κ probes the large-scale

matter distribution along the line of sight. Our estimate
κ̂ comes from CMB lensing reconstruction [26, 27] and
is Wiener-filtered such that ˆκ = Λκ � κ + noise. As a
result, the estimated convergence effectively probes the
mass distribution within a “cone”, whose line of sight
dimension is determined by the lensing efficiency ker-
nel Wκ (χ ) = δκ/δ [δ(χ )], and whose angular size is de-
termined by the Wiener filter Λκ . This is depicted in
Fig. 1.

We split this cone into thin slices of fixed comoving
distance χ and thickness dχ . The variance of the den-
sity field δ̄(χ ) averaged over this thin slice is given by
Var δ̄(χ ) = σ2 (χ ) /dχ (see [21]) with

σ2 (χ ) =
d2k�
(2π)2

|Λκ ( = χ k� ) |
2 P lin (k� , χ ) (1)

where P lin (k� , χ ) is the linear matter power spectrum at
comoving distance χ . The covariance of δ̄(χ ) with the 1d
power spectrum measured on the same slice is [21]

Cov δ̄(χ ) , P 1d
Ly α (k , χ ) = Var δ̄(χ )

∂ P 1d
Ly α (k , χ )

∂δ
+O (σ4 ) .

(2)
In other words, the response of the Lyman- α power spec-
trum to the mean matter overdensity produces a non-zero
covariance. This is the signal we wish to detect. For a
given Lyman- α forest, measured between χmin and χmax ,
we define an average power spectrum

P 1d
Ly α (k ) =

1
∆ χ

χ max

χ min

dχ P 1d
Ly α (k , χ ) (3)

where ∆ χ = χmax − χmin . Since the CMB convergence
κ = dχW (χ )δ(χ ) is a weighted average of the matter
density field, we perform the same average on Eq. (2) to
get an integrated bispectrum between the CMB lensing
convergence and fluctuations in the Lyman- α forest

B κ ,Ly α (k voC=̂) κ , P 1d
Ly α (k )

=
1
∆ χ

dχ Wκ (χ )
∂ P 1d

Ly α (k , χ )
∂δ

σ2 (χ ) ,(4)

where the integral runs from χmin to χmax . We assumed
the various redshift slices are uncorrelated, as in the Lim-
ber approximation [28].
To go further, we need to evaluate the response of

the Lyman- α power spectrum to the mean overdensity
∂ P 1d

Ly α / ∂δ . The 1d power spectrum is related to the 3d
power spectrum as

P 1d
Ly α (k ) =

d2k�
(2π)2

P 3d
Ly α (k , k� ) , (5)

which, in turn, is related to the linear matter power spec-
trum via the fitting function of [18] as

P 3d
Ly α (k , k� ) = b21 1 + βµ2 2 D (k, µ )P lin (k) , (6)

where µ is the cosine of the angle between k and
k = k + k� . The term b1 represents the linear bias
of the Lyman- α transmission, β corresponds to linear
redshift-space distortions, and D encapsulates several
non-linearities: Jeans smoothing at small scales under
gas pressure, thermal broadening of absorption lines due
to local thermal velocity dispersion and finally non-linear

2

FIG. 1. Schematic of the correlation: overdense regions (re-
spectively underdense regions), in red on the top panel (blue
on the bottom panel) have positive (negative) CMB lensing
convergence and are expected to produce more (less) small-
scale structures under non-linear gravitational evolution,
which is detectable in the amplitude of the Lyman- α forest
power spectrum. The extent of the aforementioned regions
is determined by the angular resolution θWF of the Wiener-
filtered convergence map and depth of the lensing e fficiency
function. In this analysis, we select Lyman- α forests in the
redshift range 2 .1 − 3.6.

scales, due to non-linear evolution under gravity [20–22]
(see Fig. 1 for a schematic of this idea). This bispectrum
would therefore vanish at linear order in the perturbation
theory of the density field, where short and long modes
are independent. Instead, for a non-linear density field,
this signal probes the response of Lyman- α the power
spectrum to a mean overdensity.
This method was proposed in [23–25]. In this Letter,

we present the first detection of this signal, and propose
a new theoretical description ofi t, based on the response
of the matter power spectrum to a mean overdensity.

THEORY

We aim at evaluating the covariance between
the one-dimensional power spectrum P 1d

Ly α (k ) of the
Lyman- α forest transmission on one line of sight and the
CMB convergence κ on the same line of sight.
The CMB lensing convergence κ probes the large-scale

matter distribution along the line of sight. Our estimate
κ̂ comes from CMB lensing reconstruction [26, 27] and
is Wiener-filtered such that ˆκ = Λκ � κ + noise. As a
result, the estimated convergence effectively probes the
mass distribution within a “cone”, whose line of sight
dimension is determined by the lensing efficiency ker-
nel Wκ (χ ) = δκ/δ [δ(χ )], and whose angular size is de-
termined by the Wiener filter Λκ . This is depicted in
Fig. 1.

We split this cone into thin slices of fixed comoving
distance χ and thickness dχ . The variance of the den-
sity field δ̄(χ ) averaged over this thin slice is given by
Var δ̄(χ ) = σ2 (χ ) /dχ (see [21]) with

σ2 (χ ) =
d2k�
(2π)2

|Λκ ( = χ k� ) |
2 P lin (k� , χ ) (1)

where P lin (k� , χ ) is the linear matter power spectrum at
comoving distance χ . The covariance of δ̄(χ ) with the 1d
power spectrum measured on the same slice is [21]

Cov δ̄(χ ) , P 1d
Ly α (k , χ ) = Var δ̄(χ )

∂ P 1d
Ly α (k , χ )

∂δ
+O (σ4 ) .

(2)
In other words, the response of the Lyman- α power spec-
trum to the mean matter overdensity produces a non-zero
covariance. This is the signal we wish to detect. For a
given Lyman- α forest, measured between χmin and χmax ,
we define an average power spectrum

P 1d
Ly α (k ) =

1
∆ χ

χ max

χ min

dχ P 1d
Ly α (k , χ ) (3)

where ∆ χ = χmax − χmin . Since the CMB convergence
κ = dχW (χ )δ(χ ) is a weighted average of the matter
density field, we perform the same average on Eq. (2) to
get an integrated bispectrum between the CMB lensing
convergence and fluctuations in the Lyman- α forest

B κ ,Ly α (k voC=̂) κ , P 1d
Ly α (k )

=
1
∆ χ

dχ Wκ (χ )
∂ P 1d

Ly α (k , χ )
∂δ

σ2 (χ ) ,(4)

where the integral runs from χmin to χmax . We assumed
the various redshift slices are uncorrelated, as in the Lim-
ber approximation [28].
To go further, we need to evaluate the response of

the Lyman- α power spectrum to the mean overdensity
∂ P 1d

Ly α / ∂δ . The 1d power spectrum is related to the 3d
power spectrum as

P 1d
Ly α (k ) =

d2k�
(2π)2

P 3d
Ly α (k , k� ) , (5)

which, in turn, is related to the linear matter power spec-
trum via the fitting function of [18] as

P 3d
Ly α (k , k� ) = b21 1 + βµ2 2 D (k, µ )P lin (k) , (6)

where µ is the cosine of the angle between k and
k = k + k� . The term b1 represents the linear bias
of the Lyman- α transmission, β corresponds to linear
redshift-space distortions, and D encapsulates several
non-linearities: Jeans smoothing at small scales under
gas pressure, thermal broadening of absorption lines due
to local thermal velocity dispersion and finally non-linear
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with theoretical curves with best fit biases. The best fit
of the linear bias b1(z) is shown in Fig. 3 with error bars
including the marginalization over ↵z. We fit this result
with a power law in (1 + z) of the form b1(z) = a(1+ z)b

and find a = �0.00507 and b = 2.79. It is represented
by the solid blue curve in Fig. 3 and is in fairly good
agreement with the bias measured in hydrodynamic sim-
ulations in [18] (which we only used in the weights).
The next step of our analysis is to compute the

weighted unbiased covariance of the lensing convergence
and the one-dimensional power spectrum. Quasars have
a significant contribution to the lensing of the CMB
because the lensing e�ciency W peaks at z ⇠ 2.
Therefore, we expect the mean convergence in the di-
rections of quasars to be positive, and indeed find
104 ⇥ h

WF
i i = 1.35 ± 0.52. This value is consistent with

the expected amplitude  = (⇤ ⇤ ⌃)/⇢̄ ⇠ 1.5 ⇥ 10�4

where ⌃ is the projected density of the haloes hosting
the quasars (computed for a NFW profile [36] with a
halo mass Mh ⇠ 2⇥1012M�/h and redshift 2.5 [37]) con-
volved with the Wiener filter and ⇢̄ is the mean matter
density. With the aim of measuring the correlation be-
tween our two probes, we subtract the mean value h

WF
i i

in the computation of the covariance. So as to decrease
the e↵ects of noise in this measurement, we also subtract
the mean value of the power spectrum in each k-bin. The
estimator for the correlation of CMB lensing and fluctua-
tions in the Lyman-↵ forest, i.e. the CMB lensing � Ly↵
integrated bispectrum, is defined as

B̂,Ly↵(kk) =̂ Covw(kk)

⇥

WF

, P
1d
Ly↵(kk)

⇤
, (20)

where

Covw [x, y] = N ⇥

X

i

wi (xi � hxi) (yi � hyi) (21)

with the normalization N =
P

i wi/

⇣
(
P

i wi)
2

�
P

i w
2
i

⌘
.

The mean values h
WF

i and hP
1d(kk)i are computed

using the same weights as well. The measured values in
each k-bin are shown in purple in Fig. 4.

To compute the covariance matrix for the various k-
bins, we proceed by computing the signal repeatedly with
shu✏ed indices in 

WF
i . More precisely, for a given ran-

dom permutation � of the quasar indices, we compute

Cov
h

WF
�(i), P

1d
Ly↵,i(kk)

i
and repeatN = 10, 000 times. We

then estimate the mean value (thin red boxes on Fig. 4)
and the empirical covariance. The corresponding matrix
of correlation coe�cients is shown in Fig. 5.

Finally, we aim at comparing our theoretical model and
fitting a value of the e↵ective non-linear bias be↵2 defined
in Eq. (9). We measure a single number, i.e. a scale
and redshift averaged non-linear bias, characterizing the
non-linear response in our sample. For each line of sight,
we evaluate the expected signal using Eq. (4) given the
redshift range [zmin, zmax] of the forest, and the linear
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FIG. 4. Integrated bispectrum of CMB lensing and fluctua-
tions in the Lyman-↵ forest. The Wiener-filtered CMB lens-
ing is measured in the direction of quasars for which we mea-
sure the Lyman-↵ forest one-dimensional power spectrum in
the range kk ⇠ 0.1 � 1.5 h/Mpc. Data points (in purple)
show a signal measured at 5 �. The theoretical curve (solid
orange) is the sum of two terms: the response of the lin-
ear matter power spectrum (dashed), and the response of the
non-linear terms in the Lyman-↵ power spectrum (non-linear
bias b2, Kaiser term and baryonic non-linear term D) (dot-
ted). While the first involves no free parameter, the latter
has an amplitude proportional to the e↵ective non-linear bias
be↵2 = 1.16 ± 0.53, see Eq. (9). The orange area represents
the 1 � uncertainty on this non-linearity amplitude. We test
that our estimator is coherent with zero in the case of no cor-
relation by a shu✏ing method (thin red boxes, expanded 10
times for visibility).

FIG. 5. Correlation matrix of the data-points between k-
bins computed by shu✏ing the indices of one of the variables.
It shows an important correlation ranging from 20% up to
almost 65% for the large k modes.

bias b1(z) from the power law best fit. We then weight
the theoretical expected value by the weights in Eq. (19).
The best fit value is b

e↵
2 = 1.16 ± 0.53. The theoretical

curve (in orange in Fig. 4) is the sum of two contributions,
one from the linear power spectrum (dashed line) and the
other from the non-linear terms (dotted line).

Using the covariance matrix obtained by our shu✏ing
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Tidal reconstruction for Ly-⍺ forest:  
Enabling cross-correlation with CMB lensing
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FIG. 1. Because of the nonlinear evolution under grav-
ity, the amplitude of the Lyman-↵power spectrum on small
scales responds to the large-scale matter overdensity. We look
for this signal by cross-correlating the CMB lensing conver-
gence, probe of the matter overdensity, with the 1D Lyman-
↵forest power spectrum. This amounts to reconstructing the
large-scale Fourier modes from the small-scale modes, with a
quadratic estimator in the Lyman-↵forest, akin to tidal re-
construction.

of observed line intensity mapping signals, and would
constrain their connection to the matter density field.

This issue can be circumventing by better modeling
of the foregrounds, or of the quasar continuum in the
case of the Lyman-↵forest. Another solution is to use
the Lyman-↵forest or the intensity map as a light source
whose lensing can be reconstructed. This lensing can
then be correlated with 2D maps. Yet another solution is
to reconstruct the missing line-of-sight modes, using their
coupling to the small-scale Fourier modes which are di-
rectly observable. This is generally done with a quadratic
estimator, and called position-dependent power spectrum
or tidal reconstruction.

In this paper, we follow this approach. We use the
small-scale 1D Lyman-↵power spectrum as a quadratic
estimator for the large-scale density field, and correlate
it with CMB lensing. This cross-correlation is thus e↵ec-
tively a bispectrum measurement. We model this bispec-
trum following the position-dependent power spectrum
formalism, as used in the derivation of the supersample
variance:

PLy↵(kk, r?) = PLy↵(kk) +
dPLy↵(kk)

d�̄
�̄(r?) (1)

where r? is the angular position on the studied slice.

hPLy↵(kk,k?)⇤(k0
?)i =

dPLy↵(kk)

d�̄
P

2D

�̄ (k?) (2)

where P
2D

�̄
(k?) is given by

P
2D

�̄ (k?) = h(k?)�̄(k?)i (3)

In order to evaluate these expressions for the signal of
interest, we start with the CMB lensing convergence in
Sec. III. We then focus on the Lyman-↵forest power spec-
trum in Sec. IV and its response to a matter overdensity
in V, highlighting the important theoretical uncertainty
in the expected signal.

III. CMB LENSING FROM PLANCK, ACT, SO
& CMB-S4

The signal of interest is a correlation of the one-
dimensional Lyman-↵ power spectrum with the lensing
convergence measured in the same line of sight. There-
fore we need to maximize the signal to noise on the lens-
ing measurements. In order to obtain a convergence map
with the best signal-to-noise possible, we apply a Wiener
filter such that


WF

`m = W``m, (4)

where W` = C

` /(C

` + N

` ). Indeed, the Wiener fil-

ter is the estimator linear in the convergence map which
minimizes the mean squared error with respect to the
true convergence.

In principle, one could instead explores the scale de-
pendence of the Lyman-↵-Lyman-↵-CMB lensing bispec-
trum, as a function of the separation between the sep-
aration between the position in the CMB lensing map
and the Lyman-↵forest linie of sight. However, this scale
dependence is likely trivial, given by the CMB lensing-
matter correlation function, which is better probed di-
rectly with CMB lensing alone. As a result, we choose to
compress the information (and the signal-to-noise) from
this scale-dependence into an optimal point estimate for
the CMB lensing convergence, the Wiener-filtered con-
vergence.

The resulting filtered map 
WF(n̂) will therefore be

a smoothed version of the original map with a typical
smoothing scale ✓WF. We demonstrate in appendix C
that even if we have multiple 1D power spectra that are
separated by less than ✓WF (i.e. with a highly corre-
lated lensing measurement) we do not lose constraining
power on the -Ly↵ bispectrum. In the following we will
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Forecast for DESI & ACT/SO/S4
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FIG. 7. Forecasted ω-Lyε bispectrum from the combina-
tion Simons Observatory lensing measurements with DESI-
Y5 Lyε forests. The signal-to-noise ratio is visibly su!cient
to detect the correlation in five redshift bins. However, the
contaminating signals are comparable to the signal of inter-
est, or even larger at the higher redshifts. They will need to
be accurately modelled and subtracted.

VI. FORECAST RESULTS

SNR
Dataset z1 z2 z3 z4 z5 Combined
Planck+BOSS 1.9 2.2 2.0 2.2 1.5 4.4
ACT+DESI-Y1 2.4 2.8 2.6 2.8 1.9 5.7
ACT+DESI-Y5 4.5 5.1 4.8 5.1 3.5 10.3
SO+DESI-Y5 6.3 7.2 6.8 7.4 5.1 14.8
CMB-S4+DESI-Y5 8.5 9.8 9.3 10.2 7.1 20.2

TABLE II. Signal-to-noise ratios in di”erent redshift bins. We
display the SNR computed using a covariance matrix with a
structure following what is shown in Doux+15. We use several
redshift bins z1 (2.20 → z → 2.35), z2 (2.35 → z → 2.51), z3
(2.51 → z → 2.67), z4 (2.67 → z → 2.99), z5 (2.99 → z → 3.63)
and also show the signal-to-noise for the coadded bispectrum.

In Section V we have described our method to es-
timate the response of the one-dimensional Lyman-ω
power spectrum to a large scale matter overdensity. We
have calculated the uncertainty on P

1D

Lyω
in Section IV

and on the lensing convergence variance on the line of
sight in Section III. We are now in a position to compute
the forecasted SNR given a lensing noise power spectrum
and a survey area. In Fig. 7 we display the forecasted bis-
pectrum along with the associated error bars as a purple
line, for SO and DESI. The underlying cosmological sig-
nal is displayed as a solid yellow line and the contribution
of contaminants is displayed as dashed and dotted lines.
One can note that the contribution of the cosmological
signal to the total bispectrum decreases with redshift. As
depicted in Fig. 7, the di!erent contributions to the total
bispectrum do not have the same redshift dependence.
Therefore, it will be necessary to measure this signal in
several redshift bins to be able to disentangle the under-
lying cosmological signal and the contaminants in order
to provide the best constraints on the P

1D response to a
large-scale matter overdensity. This forecast shows that
upcoming cosmological data from SO and DESI will en-
able such a measurement of the ε-Lyω bispectrum with
high significance (SNR > 5) in several redshift bins.

Our expression Eq. (7) for the covariance of the bispec-
trum does not assume any correlation between k-bins. In
order to compute the signal-to-noise ratios presented in
Table II, we have assumed a correlation structure inter-
polated from Ref. [18]. We explore variation from this
assumption in Appendix B 3, defining three di!erent sce-
narios : no correlation (i.e. a diagonal covariance ma-
trix), a constant 30% correlation and a structured corre-
lation matrix inspired from Ref. [18].

VII. CONCLUSIONS

The cross-correlation signal between the Lyman-ω for-
est absorption and CMB lensing has been detected in

DESI Y1 & Planck detected at 4.8σ 
Göksel Karaçayli+24 

Look forward to Belsunce+!

Adrien La Posta
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Configuration S/N

Measured: CHIME x Planck 0.2

Simulated: CHIME x Planck 0.5

Simulated: CHIME 1000 nights x Planck 3

Simulated: CHIME 1000 nights x SO-like 5

Table 1. S/N for cross-correlation measurement and sim-
ulations that vary the noise properties of the CHIME and
lensing maps (see Equation 16 for definition of S/N). [Add
a column that translates this figure into an upper limit on
AHI or its constituent parameters.]

across the board. S/N, as defined in Equation 16, is → 3480

compared to → 13 for the noiseless case. S/N figures481

for all cases considered in this work are summarised in482

Table 1.483

Figure 6. To assess the impact of the lensing noise on the
measurement, we also substitute the noise power spectra for-
casted for the SO LAT in P. Ade et al. (2019) in place of the
Planck noise. The fiducial lensing power spectrum is also
shown for comparison. Note that SO will not provide the
same sky overlap with CHIME as Planck does so this is a
purely hypothetical exercise.

Next, in addition to the extended CHIME integration484

time we consider a scenario of improved noise in the485

CMB lensing reconstruction, at the level forecast by the486

Simons Observatory (SO) (P. Ade et al. 2019), see Fig-487

ure 6. As opposed to the previous scenario, this does488

not represent a configuration that will realistically be489

available in the near future, since the overlap between490

SO lensing maps in the southern hemisphere and the491

CHIME maps will be much less than what is possible492

with Planck. Nevertheless, we find a S/N → 5 in this493

case, a significant improvement that reflects the fact that494

in a cross-correlation noise terms are multiplied and thus495

improvements from either side contribute regardless of496

their intrinsic signal-to-noise.497

7. CONCLUSION498

• Demonstrated a method for detecting this corre-499

lation in sims500

• Upper limit and outlook for future datasets501

• [Expect continued improvement in the CHIME502

data cleaning.]503

• [Anticipate / hint at new analysis methods.]504
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all the results apply identically.

III. INTERLOPER EMISSION AND LINE PAIRS

Throughout this paper, we consider two di↵erent lines
with widely separated rest-frame frequencies. We denote
by X and Y intensity maps in these two target lines, from
galaxies at the same redshift. Since X and Y trace the
large-scale structure distribution of matter at the same
redshift, they are correlated and have a non-zero cross-
spectrum C

XY
l . The two intensity maps X and Y are

a↵ected by interloper foregrounds. However, we assume
that the target lines and redshift of X and Y have been
selected such that their interlopers do not originate from
the same redshift, and are therefore statistically indepen-
dent.

While our formalism applies identically to any pair of
such lines X and Y , we focus on a specific example below.
We consider intensity maps in [Cii] and Ly-↵ at redshift
z = 5 as our intensity maps X and Y . The [Cii] LIM is
contaminated by CO and Ci rotational lines from vari-
ous redshifts. Similarly, the Ly-↵ LIM is contaminated
by H↵ and H↵ interlopers at low redshift. Crucially, as
illustrated in Fig. 2, the interlopers for [Cii] and Ly-↵ do
not overlap in redshift, such that they are indeed statis-
tically independent. For concreteness, in what follows,
we focus on CO (J=4-3) and H↵ lines as interlopers to
the target [Cii] and Ly-↵ lines respectively. Our analysis
however, is equally applicable to all the interloper lines
simultaneously, since they do not overlap in redshift.
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FIG. 2. Although our formalism applies to any pair of LIMs
X and Y , we consider the specific example of [Cii] and Ly-↵
LIMs from redshift 5. Although each LIM is contaminated by
interlopers (CO and Ci for [Cii], and H↵ and H� for Ly-↵),
these interlopers do not overlap in redshift, and are therefore
uncorrelated. As a result, they do not bias the LIM-pair lens-
ing estimator, as we show below. Neither axis is to scale in
this schematic.

A key input to the LIM-pair lensing estimator below is
the auto- and cross-spectra of the LIMs X and Y . Com-
puting the e↵ect of interlopers on the bias and variance
of this estimator further requires modeling the bispectra

and trispectra of these LIMs. For all this, we use the
halo model formalism from [42, 43], based on conditional
luminosity functions, and use the publicly available code
HaloGen

2, as described in App. A.

IV. LINE-PAIR LENSING QUADRATIC
ESTIMATORS

To derive the LIM-pair lensing quadratic estimator, we
follow Ref. [44]. We seek an estimator of the form

̂XY (L) =

Z
d
2
l1

(2⇡)2
d
2
l2

(2⇡)2
�

D
l1+l2 FXY (l1, l2) Xl1YL�l1 ,

(7)
where L = l1+l2 and the Dirac delta enforces the Fourier
mode constraint, and FXY is uniquely determined by re-
quiring ̂XY to be unbiased (to first order in the true )
and to have minimum variance. As shown in App. B, the
solution is

FXY (l1, l2) = �XY (L)⇥
C

Y Y
l1

C
XX
l2

fXY (l1, l2) � C
XY
l1

C
XY
l2

fXY (l2, l1)

C
XX
l1

C
Y Y
l2

C
Y Y
l1

C
XX
l2

�
�
C

XY
l1

C
XY
l2

�2
, (8)

where the Lagrange multiplier �XY (L) is given by
Eq. (B10). In what follows, we compare this estimator to
the ones built on LIM X (denoted ̂XX) or Y (denoted
̂Y Y ) alone, where FXX and FY Y are given by Eq. (B11).

V. GAUSSIAN NOISE BIAS N (0)

Similarly to all quadratic lensing estimators, the LIM-
pair estimator is a↵ected by the Gaussian lensing recon-
struction noise N

(0), given in Eq. B8. In particular, the
lensing noise for the LIM-pair estimator ̂XY receives
contribution not only from the cross-spectrum C

XY
` , but

also the auto-spectra C
XX
` and C

Y Y
` . Interloper fore-

grounds, which do not a↵ect the cross-spectrum, do en-
hance the auto-spectra, thus increasing the lensing noise.
As a result, the lensing noise for ̂XY is not significantly
reduced compared to those of ̂XX and ̂Y Y . This makes
sense intuitively: although the interlopers are nulled in
the cross-spectrum, they are still present in the LIMs,
acting as a source of noise.

This lensing noise N
(0) receives contribution from the

power spectra of the target line itself, the detector noise,
and potential foregrounds. However, the N

(0) noise only
takes into account the Gaussian part of these compo-
nents. If the interloper foregrounds were Gaussian ran-
dom fields, they would be fully described by N

(0), and

2
https://github.com/EmmanuelSchaan/HaloGen/tree/LIM
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ondary bias for ̂XY ̂XY is small and can potentially
be neglected. In short, combinations from two LIMs
X and Y cannot suppress all the interloper bias terms,
but the auto-spectrum of the “LIM-pair” lensing esti-
mator appears to su�ciently reduce them. While the
bias to ̂XY ̂XY appears negligible (secondary bispec-
trum only), our bispectrum calculation only includes the
1-halo term, such that it is only a lower limit. Further-
more, the secondary bias may be larger when considering
di↵erent pairs of lines. The interloper biases for the var-
ious combinations are shown in Fig. 4. Interestingly, in

FIG. 4. Even with two LIMs X=Ly-↵ and Y=[Cii]
at z = 5, whose interlopers are independent, one cannot
avoid all the interloper biases. The combinations ̂XX ̂XX

(green), ̂XX ̂XY (red) and ̂XY ̂XY (cyan) are dominated
by the residual secondary bispectrum term. The combina-
tions ̂XX ̂Y Y (blue) and ̂XX ̂CMB (grey) are dominated
by the residual primary bias. However, the cross-correlation
of the LIM-pair estimator and CMB lensing, i.e. ̂XY ̂CMB

(purple) is entirely free of interloper bias. This is the main
result of this paper.

Fig. 4, the interloper bias to lensing is very di↵erent for
̂XX ̂XY and ̂XY ̂XY , even though they are both dom-
inated by secondary bispectrum-like terms. We explain
this in App. C.

Using three LIMs X, Y and Z from the same redshift,
with independent interlopers, still does not avoid all the
interloper biases. If four LIMs X, Y , Z and W were
available from the same redshift, with independent inter-
lopers, the combination ̂XY ̂ZW would be entirely free
of interloper bias. Although one may hope to use CO,
[Cii], Ly-↵ and 21 cm LIMs from the same redshift, this
prospect remains futuristic.

B. Avoiding all the biases via CMB lensing
cross-correlation

In order to further suppress interloper biases, we now
turn to cross-correlations of LIM-lensing with CMB lens-

ing. The combination ̂XX ̂CMB is free of trispectrum
and secondary bispectrum bias, but it still su↵ers from
the primary bispectrum. As a result, it does not reduce
the interloper bias, as illustrated in Fig. 4.

On the other hand, the combination ̂XY ̂CMB is en-
tirely free of interloper biases: it is not a↵ected by the
primary and secondary bispectra, nor the trispectrum.
This is the main result of this paper: LIM lensing can
be measured without any interloper bias, when cross-
correlating the LIM-pair estimator with CMB lensing.
Given the uncertain and potentially large interloper bi-
ases for the standard LIM lensing estimators, this con-
stitutes a dramatic progress.

C. Detectability: Signal-to-noise ratio

In this section, we answer the question of the de-
tectability of the C

̂LIM̂CMB
L and C

̂null̂CMB
L i.e. the cross-

spectrum of the CMB lensing with LIM-pair estimator
and the ”nulled” estimator respectively by computing
its expected SNR. We consider an idealized and futur-
istic experiment, signal-dominated in the LIMs out to
`max LIM = 300�1500. Our SNR calculation is described
in detail in App. D. While it is technically an upper limit,
we expect it to also be a good approximation to the truth.
In short, we adopt the Gaussian SNR formula, including
the lensing noise N

(0) as well as the non-Gaussian terms
Bp, Bs, and T from interlopers in the noise for C

̂LIM̂LIM
L .

As ̂Null is constructed through a combination of ̂XY

and ̂CMB, the XY part adds a secondary bispectrum
bias which as we show in Fig. 4 is quite small and can be
neglected here. Thus we consider only the N

(0) terms for
C

̂Null̂CMB
L SNR calculation. The various angular resolu-

tions assumed are conservative for the lines we consider
(Ly-↵ and [Cii]). For instance, an experiment like CON-
CERTO [48] should measure the [Cii] line at z = 5 with
0.240 resolution, significantly higher than assumed here.
SPHEREx [49, 50] is expected to produce a Ly-↵ LIM at
z = 5 with 600 resolution, even much higher. As Fig. 5
shows, the SNR on C

̂LIM̂CMB
L may reach several 10s of �,

allowing for a significant detection of the LIM ⇥ CMB
lensing cross-power spectrum. At the same time the SNR
for C

̂Null̂CMB
L is slightly lower which is expected but it

may still be significantly detected with an experiment like
we have considered here. For the detector noise, an ex-
periment with sensitivity like CONCERTO over a large
sky fraction will be required for such a detection whereas
the sensitivity of a SPHEREx like experiment may not be
su�cient. As for any LIM forecast, the theoretical uncer-
tainty on the LIM power spectra at high redshift is very
large, which may a↵ect our conclusions. We relied on the
halo model predictions from [42, 43], whose LIM power
spectra were found in agreement with the literature.

While upcoming experiments may be limited by sensi-
tivity and sky coverage, a futuristic experiment such as
the one we considered here can thus detect LIM lensing
with the LIM-pair lensing and the null combination, in

New source plane at high z 
➞ Nulling: isolate the very-high-z Universe

Using pair of lines at same z…                         nulls the interloper bias!
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FIG. 6. Foreground filtering suppresses by only an O(1)
factor the detectability of a direct correlation between line
intensity maps and CMB lensing, though it is unlikely this
direct correlation will be detectable with current era LIM ex-
periments (colored lines, Table I) when correlated with CMB
lensing measured by the Simons Observatory (Ref. [75]). How-
ever, we show in Fig. 7 this direct correlation is imminently
detectable by future LIM experiments, principally because the
suppression of SNR due to foreground filtering is not catas-
trophic as previously claimed in the literature. Thin colored
lines correspond to the SNR of the unfiltered LIM → CMB
lensing cross-spectrum and the diamonds mark when the cut-
o! scale ! equals the fundamental k→ mode measured by an
experiment.
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FIG. 7. The direct correlation of LIM with CMB lensing is
likely detectable with future LIM experiments (colored lines),
which we approximate as current era experiments (Table I)
that observe the full sky, when correlated with CMB lensing
measured by the Simons Observatory (Ref. [75]). In particu-
lar we predict that wider-field verions of COMAP, CCAT, and
HETEDEX will be able to precisely measure the LIM→CMB
lensing cross-spectrum (SNR ↑ 10 at ! = 0.1 Mpc↑1). Fur-
thermore, as we show in Fig. 8, many of these experiments
need only observe a smaller fraction of the sky to detect the
direct correlation. Thin colored lines correspond to the SNR
of the unfiltered LIM → CMB lensing cross-spectrum and the
diamonds mark when the cuto! scale ! equals the fundamen-
tal k→ mode measured by an experiment.
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FIG. 8. We showed in Fig. 7 that if current experiments
could observe the full sky, our proxy for future experiments,
a detection the direct correlation would be likely. Here, we
show that the direct correlation of LIM with Simons Obser-
vatory (Ref. [75]) CMB lensing is detectable (SNR ↑ 5) by
future LIM experiments even when only a fraction of the
sky is observed. Of particular note is CHIME whose fidu-
cial ”field is su#cient for SNR ↑ 5 at ! = 0.1 Mpc↑1. Be-
cause we assumed a pessimistic experimental configuration
for CHIME (Table I), we infer that CHIME and future 21cm
intensity mapping experiments may also be able to precisely
measure the LIM→CMB lensing cross-spectrum. The thin
colored lines correspond to the required ”field to detect the
unfiltered LIM → CMB lensing cross-spectrum, the diamonds
mark when the cuto! scale ! equals the fundamental k→ mode
measured by an experiment, and the circles mark the fiducial
sky area each experiment observes (Table I).

lation of LIM with CMB lensing9. Indeed, we show in
Fig. 8 that many experiments can detect the direct cor-
relation while observing small fractions of the full-sky.

Of particular note in Fig. 8 is CHIME whose fiducial
sky area we predict is su!cient to have SNR → 5 at
! = 0.1 Mpc→1. Because we assumed a pessimistic ex-
perimental configuration for CHIME (see caption of Ta-
ble I), we also infer10 that CHIME may be able to detect
this direct correlation in addition to future 21cm inten-
sity mapping experiments such as CHORD (Ref. [25]),

9 Specifically, we predict they will have a SNR → 10 at
! = 0.1 Mpc↑1. This choice of reference ! is motivated by
the fact that (1) optical- and mm-wavelength observations are
generally less dominated by foregrounds than 21cm observations
and (2) in the detection of 21cm emission by CHIME in Ref. [25],
foregrounds required a ! ↑ 0.1 Mpc↑1.

10 Note that [25] was required to use ! = 0.13 Mpc↑1 which is
beyond what we compute.
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FIG. 8. We showed in Fig. 7 that if current experiments
could observe the full sky, our proxy for future experiments,
a detection the direct correlation would be likely. Here, we
show that the direct correlation of LIM with Simons Obser-
vatory (Ref. [75]) CMB lensing is detectable (SNR ↑ 5) by
future LIM experiments even when only a fraction of the
sky is observed. Of particular note is CHIME whose fidu-
cial ”field is su#cient for SNR ↑ 5 at ! = 0.1 Mpc↑1. Be-
cause we assumed a pessimistic experimental configuration
for CHIME (Table I), we infer that CHIME and future 21cm
intensity mapping experiments may also be able to precisely
measure the LIM→CMB lensing cross-spectrum. The thin
colored lines correspond to the required ”field to detect the
unfiltered LIM → CMB lensing cross-spectrum, the diamonds
mark when the cuto! scale ! equals the fundamental k→ mode
measured by an experiment, and the circles mark the fiducial
sky area each experiment observes (Table I).

lation of LIM with CMB lensing9. Indeed, we show in
Fig. 8 that many experiments can detect the direct cor-
relation while observing small fractions of the full-sky.

Of particular note in Fig. 8 is CHIME whose fiducial
sky area we predict is su!cient to have SNR → 5 at
! = 0.1 Mpc→1. Because we assumed a pessimistic ex-
perimental configuration for CHIME (see caption of Ta-
ble I), we also infer10 that CHIME may be able to detect
this direct correlation in addition to future 21cm inten-
sity mapping experiments such as CHORD (Ref. [25]),

9 Specifically, we predict they will have a SNR → 10 at
! = 0.1 Mpc↑1. This choice of reference ! is motivated by
the fact that (1) optical- and mm-wavelength observations are
generally less dominated by foregrounds than 21cm observations
and (2) in the detection of 21cm emission by CHIME in Ref. [25],
foregrounds required a ! ↑ 0.1 Mpc↑1.

10 Note that [25] was required to use ! = 0.13 Mpc↑1 which is
beyond what we compute.
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Mode coupling present even in linear theory 
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likely detectable with future LIM experiments (colored lines),
which we approximate as current era experiments (Table I)
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for CHIME (Table I), we infer that CHIME and future 21cm
intensity mapping experiments may also be able to precisely
measure the LIM→CMB lensing cross-spectrum. The thin
colored lines correspond to the required ”field to detect the
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mark when the cuto! scale ! equals the fundamental k→ mode
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lation of LIM with CMB lensing9. Indeed, we show in
Fig. 8 that many experiments can detect the direct cor-
relation while observing small fractions of the full-sky.

Of particular note in Fig. 8 is CHIME whose fiducial
sky area we predict is su!cient to have SNR → 5 at
! = 0.1 Mpc→1. Because we assumed a pessimistic ex-
perimental configuration for CHIME (see caption of Ta-
ble I), we also infer10 that CHIME may be able to detect
this direct correlation in addition to future 21cm inten-
sity mapping experiments such as CHORD (Ref. [25]),

9 Specifically, we predict they will have a SNR → 10 at
! = 0.1 Mpc↑1. This choice of reference ! is motivated by
the fact that (1) optical- and mm-wavelength observations are
generally less dominated by foregrounds than 21cm observations
and (2) in the detection of 21cm emission by CHIME in Ref. [25],
foregrounds required a ! ↑ 0.1 Mpc↑1.

10 Note that [25] was required to use ! = 0.13 Mpc↑1 which is
beyond what we compute.
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likely detectable with future LIM experiments (colored lines),
which we approximate as current era experiments (Table I)
that observe the full sky, when correlated with CMB lensing
measured by the Simons Observatory (Ref. [75]). In particu-
lar we predict that wider-field verions of COMAP, CCAT, and
HETEDEX will be able to precisely measure the LIM→CMB
lensing cross-spectrum (SNR ↑ 10 at ! = 0.1 Mpc↑1). Fur-
thermore, as we show in Fig. 8, many of these experiments
need only observe a smaller fraction of the sky to detect the
direct correlation. Thin colored lines correspond to the SNR
of the unfiltered LIM → CMB lensing cross-spectrum and the
diamonds mark when the cuto! scale ! equals the fundamen-
tal k→ mode measured by an experiment.
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FIG. 8. We showed in Fig. 7 that if current experiments
could observe the full sky, our proxy for future experiments,
a detection the direct correlation would be likely. Here, we
show that the direct correlation of LIM with Simons Obser-
vatory (Ref. [75]) CMB lensing is detectable (SNR ↑ 5) by
future LIM experiments even when only a fraction of the
sky is observed. Of particular note is CHIME whose fidu-
cial ”field is su#cient for SNR ↑ 5 at ! = 0.1 Mpc↑1. Be-
cause we assumed a pessimistic experimental configuration
for CHIME (Table I), we infer that CHIME and future 21cm
intensity mapping experiments may also be able to precisely
measure the LIM→CMB lensing cross-spectrum. The thin
colored lines correspond to the required ”field to detect the
unfiltered LIM → CMB lensing cross-spectrum, the diamonds
mark when the cuto! scale ! equals the fundamental k→ mode
measured by an experiment, and the circles mark the fiducial
sky area each experiment observes (Table I).

lation of LIM with CMB lensing9. Indeed, we show in
Fig. 8 that many experiments can detect the direct cor-
relation while observing small fractions of the full-sky.

Of particular note in Fig. 8 is CHIME whose fiducial
sky area we predict is su!cient to have SNR → 5 at
! = 0.1 Mpc→1. Because we assumed a pessimistic ex-
perimental configuration for CHIME (see caption of Ta-
ble I), we also infer10 that CHIME may be able to detect
this direct correlation in addition to future 21cm inten-
sity mapping experiments such as CHORD (Ref. [25]),

9 Specifically, we predict they will have a SNR → 10 at
! = 0.1 Mpc↑1. This choice of reference ! is motivated by
the fact that (1) optical- and mm-wavelength observations are
generally less dominated by foregrounds than 21cm observations
and (2) in the detection of 21cm emission by CHIME in Ref. [25],
foregrounds required a ! ↑ 0.1 Mpc↑1.

10 Note that [25] was required to use ! = 0.13 Mpc↑1 which is
beyond what we compute.
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Conclusions

Cross-correlations with CMB / galaxy surveys are crucial  
for IM at high z 

Foregrounds → Missing large-scale Fourier modes 

But the large-scales can be reconstructed from small scales  
via tidal reconstruction and lensing reconstruction 
Doux Schaan+16, Schaan Ferraro Spergel 19, Maniyar Schaan Pullen 21, La Posta Schaan 24, 
Pinsonneault-Marotte+in prep 

Large-scales also leak into small-scales due to time evolution 
Shen Kokron Schaan 25 

Pairs of lines at same z avoid many interloper biases 
Schaan White 21a, b, Maniyar Schaan Pullen 21


