Accurate cosmology from CMB lensing and galaxy surveys

Noah Sailer

in collaboration with Martin White, Simone Ferraro, Emmanuel Schaan, ++

INPA seminar | April 7th 2023

LSS surveys at a (very selective) glance

Significant improvements in precision

Effective number of linear modes

NS Castorina Ferraro White 2021

CMB lensing

Forecasts

• Full-shape $P_{gg}(k,\mu)$

Projected C^{gg} , $C^{\kappa g}$

- linear theory from CLASS, non-linearities modeled with 1-loop LPT
- Only include quasi-linear k's
- $C^{\kappa\kappa}$ modeled with halofit (L < 500)
- Post-reconstruction $P_{gg}(k,\mu)$ within the Zel'dovich approximation

velocileptors	Public
A code for velocity-based Lagrangian and Euleriar redshift-space distortions.	n PT expansions of
🔵 Jupyter Notebook 🔥 14 😵 5	
ZeldovichReconPk	Public
Code to compute post-reconstruction halo power Zeldovich approximation.	spectra in the
● Jupyter Notebook 🟠 1 😵 1	

Code originally written for \rightarrow

https://github.com/NoahSailer/FishLSS

Cosmology at high redshift - a probe of fundamental physics

Noah Sailer, a,b Emanuele Castorina, d,e Simone Ferraro c,b and Martin White a,b,c

^aDepartment of Physics, University of California, Berkeley, CA 94720, USA ^bBerkeley Center for Cosmological Physics, UC Berkeley, CA 94720, USA ^cLawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA ^dDipartiment of Fisica 'Aldo Pontremoli', Universita' degli Studi di Milano, Milan, Italy ^eTheoretical Physics Department, CERN, 1211 Geneva 23, Switzerland

Structure growth

Significant improvements from cross-correlations with CMB lensing (SO)

NS Castorina Ferraro White 2021

BAO measurements (distances)

NS Castorina Ferraro White 2021

Detection of DE vs. redshift

Inflation: Primordial Non-Gaussianity

NS, Castorina, Ferraro, White 2021

Potential 10x improvement from multi-tracer (Sullivan, Prijon, Seljak 2023)

Non-local PNG

Experiment	$\sigma(f_{\rm NL}^{\rm eq})$	$\sigma(f_{ m NL}^{ m orth})$
MegaMapper - A	23	10
MegaMapper - B	22	10
MegaMapper - C	17	8
Planck 2018	47	24
Simons Observatory (SO)	27	14
CMB-S4	21	9
MegaMapper + SO	16	8
MegaMapper + CMB-S4	14	7

Cabass, Ivanov, Philcox, Simonovic, Zaldarriaga 2022

Inflation: Primordial Features

Light relics

$$\rho_r = \frac{\pi^2}{15} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] T_{\gamma}^4 \qquad N_{\text{eff}} = 2.99 \pm 0.34$$
from Planck + BAO

 $\Delta N_{eff} > 0.027$ (scalar), 0.047 (Weyl fermion), 0.054 (vector boson)

CMB

- SO goal:
$$\sigma(N_{eff}) = 0.050$$

- CMB-S4:
$$\sigma(N_{eff}) = 0.025$$

CMB-S4 + Stage-V: $\sigma(N_{eff}) = 0.022$

LSS largely immune to Y_p!

Neutrino mass

NS, Ferraro, White (in prep.)

High-z expansion history

• Sudden changes to the expansion history (e.g. EDE at z_c) induce features in the power spectrum k_{hor}

• Can constrain %-level deviations out to redshift 10⁴

From forecasts to measurements

What could possibly go wrong?

S₈ "tension"

\sim 5 - 10% difference in "early" and "late" time measurements of P(k) amplitude

a.k.a. "lensing is low" problem in cosmic shear & galaxy-galaxy lensing

Systematics?

 nonlinear scales (k > 0.6 h/Mpc), modeling baryons, redshift distribution, intrinsic alignments ...

Presence in (quasi-linear) LSS:	\mathbf{S}_8
Planck CMB + CMB Lensing	0.832 ± 0.013
BOSS BAO + Full Shape	0.736 ± 0.051

S₈ "tension"

Additional systematics?

Cross-correlations typically cleaner

• e.g. immune to uncorrelated biases

Presence in x-corr	S ₈
Planck CMB + CMB Lensing	0.832 ± 0.013
unWISE x Planck	0.776 ± 0.017

*re-analysis in progress

What we know:

• Low S_8 measurements from **low-redshifts** (z < 1)

CMB:	0.832 ± 0.013
CMB lensing:	0.83 ± 0.03

- $\sim 3\sigma$ tension with CMB
- Rough agreement across a broad range of scales
 e.g. shear vs. redshift-space galaxy clustering

If real, departure from ΛCDM!?

Foreground-immune CMB lensing reconstruction

CMB lensing

~arcmin deflections coherent on ~degree scales

 $T^{\text{lensed}}(\boldsymbol{x}) = T^{\text{unlensed}}(\boldsymbol{x} + \boldsymbol{\alpha}(\boldsymbol{x}))$

Conventionally measure lensing convergence

Clean probe of late-time structure evolution: $\sigma_8(z)$, neutrino masses, etc. Crucial for r-searches!

CMB lensing reconstruction (temperature)

Weak lensing (~arcmin deflections)

$$T^{\text{lensed}}(x) = T^{\text{unlensed}}(x) + \underbrace{\alpha(x) \cdot \nabla T^{\text{unlensed}}(x)}_{\text{convolution in L-space}} + \cdots$$

"Off-diagonal" Fourier modes are coupled

$$\langle T_{\boldsymbol{\ell}} T_{\boldsymbol{L}-\boldsymbol{\ell}} \rangle_{\text{at fixed } \kappa_{\boldsymbol{L}}} = f_{\boldsymbol{\ell},\boldsymbol{L}-\boldsymbol{\ell}}^{\kappa} \kappa_{\boldsymbol{L}} + \cdots$$

linear response to lensing $f_{\boldsymbol{\ell},\boldsymbol{L}-\boldsymbol{\ell}}^{\kappa} \equiv \frac{2\boldsymbol{L}}{L^{2}} \cdot \left[\ell C_{\boldsymbol{\ell}}^{0} + (\boldsymbol{L}-\boldsymbol{\ell}) C_{|\boldsymbol{L}-\boldsymbol{\ell}|}^{0} \right]$

Solve for κ !

Quadratic Estimators

Straightforward to derive optimal weights.

Foreground biases (CMB lensing)

CMB lensing convergence measured with Quadratic Estimator

$$\hat{\kappa} \sim \sum_{ij} F_{ij} T_i T_j$$

$$C^{\kappa g} \sim \langle \hat{\kappa}g \rangle$$
 is actually a bispectrum $\langle TTg \rangle$

If T^{obs} contains a foreground s, picks up bias

Nonzero if foregrounds are correlated with galaxy sample and non-Gaussian

CMB foregrounds

- Extragalactic foregrounds:
 - Cosmic Infrared Background (CIB)
 - Radio point sources
 - thermal- and kinetic- Sunyaev-Zel'dovich effects
- Galactic foregrounds:
 - \circ Extinction \rightarrow galaxy selection
 - $\circ \quad \text{Dust emission} \to \text{CMB} \ \kappa$

Also show up in polarization

- Radio point sources polarized at few % level
- Polarization from patchy reionization

Schlegel, Finkbeiner, Davis 1998

Extragalactic foreground biases

Extragalactic biases to cross-correlations are highly significant (in temp.) if unaccounted for

"Standard" ILC approaches lead to huge noise costs

NS, Schaan, Ferraro, Darwish, Sherwin 2021

"Tailored" ILC weights

Very simple compromise – draw a line:

 $\boldsymbol{w}_{\ell}(t) = t \boldsymbol{X}_{\ell} + (1-t) \boldsymbol{w}_{\ell}^{\mathrm{ILC}}$

Only need to pay a 30-40% noise cost, instead of a factor of 2

NS, Schaan, Ferraro, Darwish, Sherwin (2021)

Geometric approaches

Can phrase foreground bias at the map level

$$\langle TT \rangle_{\text{fixed } \kappa_L, s_L} \sim f^{\kappa} \kappa_L + g s_L$$

Linear response to lensing

Linear response to foreground

$$\hat{\kappa} \sim \sum_{ij} F_{ij} T_i T_j$$
, choose weights to mitigate sensitivity to foregrounds

- "Shear-only" reconstruction $\sum_{ij} F_{ij} g_{ij} \ll 1$ Bias-hardening $\sum_{ij} F_{ij} g_{ij} = 0$ ۲
- ۰

What does the foreground linear response g_{ii} look like?

Foreground response

"Model":

Foreground is a collection of sources with identical profiles

E.g. for temperature
$$s_{m\ell}^T = \sum_i s_i e^{-i m\ell \cdot m x_i} u_{m\ell}$$

- Each source is statistically independent.
- Positions and polarization angles are statistically independent, both of each other, and independent of polarization fractions and fluxes.
- Positions and polarization angles are uniformly distributed. This key assumption neglects the clustering of sources, and is appropriate for the polarized radio and infrared sources we consider here.

Plug and chug!

E.g. for temperature $g_{\ell,L-\ell} \propto u_\ell \, u_{|L-\ell|} / u_L$

"Shear-only" reconstruction (temp.)

Reconstructing lensing on large scales (~degrees) from small scales (~arcmin) Small parameter: L/l (Large-lens limit)

$$f_{\ell,L-\ell}^{TT} = C_{\ell}^{TT} \left[\frac{d \ln \ell^2 C_{\ell}^{TT}}{d \ln \ell} + \cos(2\theta_{L,\ell}) \frac{d \ln C_{\ell}^{TT}}{d \ln \ell} \right]$$

Foregrounds
$$g_{\ell,L-\ell}^{TT,T} = \mathcal{A} \frac{u_{\ell}}{u_{L}} \left\{ \frac{u_{\ell}}{u_{L}} - Lu_{\ell}' \cos(\theta_{L,\ell}) \right\} + \cdots$$

Only keep clean quadrupole: $F_{\ell,L-\ell} \propto \cos(2\theta_{L,\ell})$ (field-level) bias suppressed by $(L/l)^2$

Schaan & Ferraro 2018

Bias-hardening

Easy to generalize to N foregrounds (or polarization) - add more Lagrange multipliers!

Osborne, Hanson, Dore 2013 Namikawa Hanson Takahashi 2013 **NS** Schaan Ferraro 2020

Robustness to assumed profile

Assumed some profile for the sources

$$s_{\boldsymbol{\ell}}^T = \sum_i s_i e^{-i\boldsymbol{\ell}\cdot\boldsymbol{x}_i} u_{\boldsymbol{\ell}}$$

(u=1 for PS) How sensitive are we to the choice in u?

$$\langle \hat{\kappa} \rangle = \kappa + R^{\kappa,s} \, s$$

Suppose true profile is some Gaussian with width

NS Ferraro Schaan 2022

Noise cost

- "Shear-only" reconstruction: ~ factor of 2
- Bias hardening: < 20%

Details Single frequency (150 GHz) 1.4 arcmin FWHM

 $\Delta_T = 1 \ \mu \text{K-arcmin}$ $\ell_{\max,T} = 3500$ $\ell_{\max,P} = 5000$

Bias reduction (temp)

- For fixed l_{max}, hardening against a tSZ-profile reduces bias by order-of-magnitude at 10% noise cost
- In principle can push to higher l_{max} while remaining unbiased
- Lower bias, lower noise ©

NS Schaan Ferraro 2019

Bias reduction (polarization)

Radio PS only

Details WebSky sims (Li+22) 5 mJy mask threshold p = 3%Single frequency (150 GHz) 1.4 arcmin FWHM $\Delta_T = 1 \ \mu \text{K-arcmin}$ $\ell_{\max,T} = 3500$ $\ell_{\max,P} = 5000$

Foreground-immune reconstruction: summary

In addition to "standard" multi-frequency approaches, we now have

- "Tailored" multi-frequency weights
- Shear-only estimators
 - Weights suppress response to foregrounds in "large-lens limit"
- Profile-hardened estimators
 - Weights have zero-response to a collection of unclustered sources with identical tSZ-like profiles
 - Can in theory achieve a higher SNR (while staying unbiased) than the traditional QE by pushing the reconstruction to smaller scales
- Optimally combine geometric and multi-frequency methods (Darwish Sherwin NS Schaan Ferraro 2021)
 - Temperature-only: reduce bias by order of magnitude at few% noise cost
- Polarization: Bias-reduced by $\sim 10x$ (in cross, $\sim 2x$ in auto) at sub-percent noise cost

$\sigma_8(z)$ from DESI x ACT

ACT CMB lensing

DESI-ACT MoU - latest ACT CMB lensing map (Qu et. al. in prep.)

- 90, 150, 220 GHz data (through 2021) co-added with Planck (results on Tuesday!)
- Lowest noise wide-field map available
 - \circ signal dominated to L~200
 - \circ ~13k sq. deg. overlap with LRGs
- Passed ~200 systematics checks!

DESI Luminous Red Galaxies (LRGs)

DESI LRG (legacy) imaging Ideal sample for robust S₈ measurement

Precision: dense sample over large area

- 8 million galaxies
- 18k sq. deg.
- 0.4 < z < 1

Accuracy: robust against common systematics

- 99% redshift completeness
- Negligible stellar contamination (~0.5%)
- Systematics weights impact C^{gg} by < 2%

DESI Luminous Red Galaxies (LRGs)

- Spectroscopically-calibrated photo-z's
 - negligible redshift-distribution errors
 - 9k sq. deg. of full spectroscopy, can check for variations in dn/dz
- Narrow redshift bins
 - evolution within each bin is negligible
 - simplifies modeling
- Track evolution of $S_8(z)$

White et al. 2021

Very preliminary (and blinded) data

Figures from Joshua Kim

DESI x ACT robustness

Many more knobs and buttons to play with!

"Standard" checks

- Agreement across scale cuts
- Agreement in different hemispheres
- Agreement across redshift bins
- Swap out (binary) multifrequency combinations
- Correlate CMB-free reconstruction with LRGs, compare with simulations
- Null-test: curl estimator x LRGs
- Correlate CMB lensing with LRG systematic weights

Novel checks

- Agreement between minimum variance, shear-only, and profile-hardened lensing estimators
- Null test: Correlate CMB-free (profile-hardened) reconstruction with LRGs
- Bias-harden curl estimator to isolate secondary bias, compare with sims

• • •

. . .

DESI x ACT robustness

Unanswered question: importance of galactic foregrounds?

- < 5% correlation between LRGs and Planck extinction maps
 o hopefully small effect
- Traditional extinction templates correlate with LLS
 - HI emission-based templates (Lenz, Hensley, Doré 2017)
 - New stellar reddening-based templates (Mudur, Park, Finkbeiner 2022)
 - Even newer stellar reddening templates w/ DESI data (Zhou in prep.)

How strongly correlated are **emission** and **extinction**? How does this propagate to C^{kg} ?

Work in progress! (w/ Anton Lizancos & Simone Ferraro)

S₈(z) from DESI x ACT

Analysis will be **blinded** until robustness tests passed

Model for $C^{\kappa g}$ and C^{gg}

- 1-loop Lagrangian perturbation theory (velocileptors)
- Galaxies treated as an effective fluid
 - exhaustive set of EFT biases and counterterms

Covariance

- Compare both analytic (Gaussian) and numerical methods
- MoU access to mock κ realizations, brute force covariance

Entire pipeline will be made **public**

• map making, covariance estimation, theory, ...

velocileptorsPublicA code for velocity-based Lagrangian and Eulerian PT expansions of
redshift-space distortions.Image: Description of the space distortion is a space of the space distort is a space d

Looking forward

Later this year:

- Jointly analyze cross-correlation & DESI year 1 BAO
- 9k sq. deg. of spectroscopic LRG data

If tension alleviated

• Joint DESI + CMB neutrino mass measurement

Otherwise

- Constrain ACDM alternatives!
- For "early-time" solutions, plug and chug...

Stay tuned!