Future cosmology with CMB spectral distortions and secondaries

Alina Sabyr

with Colin Hill, Zoltan Haiman, Carlos Sierra, Jeffrey J. McMahon, Giulio Fabbian, Federico Bianchini

INPA seminar, 06/12/2024

Future cosmology with CMB spectral distortions and secondaries

small deviations of the CMB energy spectrum from that of a perfect blackbody.

Compton scattering, double-Compton & bremsstrahlung emission \rightarrow maintain thermal equilibrium

Compton scattering still efficient

μ -distortion \rightarrow fundamental physics

μ -distortion \rightarrow fundamental physics

Chluba+2019, Chluba+2021

- \rightarrow Generated in the early Universe.
- ➔ Within ΛCDM: Silk damping & baryon cooling
- ➔ Sensitive to primordial power spectrum on small scales.

$$
\mu \rangle \approx \int \frac{k^2 \, dk}{2\pi^2} P(k) W_{\mu}(k) e.g., Chluba+2012,Chluba+2015
$$

 y -distortion \rightarrow astrophysics

y -distortion \rightarrow astrophysics

- ➔ Known source: thermal Sunyaev-Zel'dovich effect (tSZ) – inverse Compton scattering of CMB photons on free, energetic electrons, primarily in galaxy groups & clusters.
- \rightarrow Probes the late-time Universe.
- \rightarrow Total thermal **energy** + mean temperature of electrons.

CMB spectral distortions: current status

Upper limits from COBE/FIRAS (flew in 1990's!):

- $\rightarrow \langle y \rangle$: < 15 x 10⁻⁶ (Fixsen+1996)
- $\rightarrow \langle \mu \rangle$: < 90 x 10⁻⁶ (Fixsen+1996), < 47 x 10⁻⁶ (Bianchini & Fabbian 2022)

CMB spectral distortions: current status

Upper limits from COBE/FIRAS (flew in 1990's!):

- \rightarrow $\langle y \rangle$: < 15 x 10⁻⁶ (Fixsen+1996)
- $\rightarrow \langle \mu \rangle$: < 90 x 10⁻⁶ (Fixsen+1996), < 47 x 10⁻⁶ (Bianchini & Fabbian 2022)

Why are there no additional direct and recent constraints?

- \rightarrow Need absolute temperature calibrated spectrum.
- \rightarrow Astrophysical foregrounds.

Alina Sabyr, Columbia University Abitbol+2017

SPECTER: An Instrument Concept for a Spectral Distortion Measurement with Enhanced Sensitivity.

with Carlos Sierra, Colin Hill, Jeffrey J. McMahon arXiv:2409.12188

Key idea:

Optimize frequency bands and their individual sensitivities to target the μ-distortion.

Ingredients:

- → Sensitivity calculator: **bolocalc-space**¹ (based on BoloCalc, Hill+2018)
	- HEMT amplifiers at $v <$ 10 GHz; bolometers at $v >$ 10 GHz.

Ingredients:

- \rightarrow Sensitivity calculator: **bolocalc-space**¹ (based on BoloCalc, Hill+2018)
	- HEMT amplifiers at $\nu < 10$ GHz; bolometers at $\nu > 10$ GHz.
- \rightarrow Fisher-forecast set-up: sd foregrounds optimize² (modified version of sd foregrounds, Abitbol+2017)
	- CMB signals: blackbody deviation, μ-distortion, y-distortion, rel. corr. to y-distortion.
	- Foregrounds: Galactic dust, cosmic infrared background, Galactic synchrotron, free-free, spinning dust, CO.
	- Total 16 free parameters.

Total sky signal:
$$
I_v = \Delta B_v + I_v^y + I_v^{\text{rel}-\text{tSZ}} + I_v^{\mu} + I_v^{\text{fg}}
$$
.

Fisher matrix:
$$
F_{ij} = \sum_{v,v'} \frac{\partial I_v}{\partial p_i} C_{vv'}^{-1} \frac{\partial I_v}{\partial p_j}
$$

²https://github.com/asabyr/sd_foregrounds_optimize 1 <https://github.com/csierra2/bolocalc-space>

Ingredients:

- \rightarrow Sensitivity calculator: **bolocalc-space**¹ (based on BoloCalc, Hill+2018)
	- HEMT amplifiers at ν < 10 GHz; bolometers at ν > 10 GHz.
- \rightarrow Fisher-forecast set-up: sd foregrounds optimize² (modified version of sd foregrounds, Abitbol+2017)
	- CMB signals: blackbody deviation, μ-distortion, y-distortion, rel. corr. to y-distortion.
	- Foregrounds: Galactic dust, cosmic infrared background, Galactic synchrotron, free-free, spinning dust, CO.
	- Total **16 free parameters.**
- \rightarrow Optimization/robustness tests pipeline: specter optimization³ Assess the set-up via $\mathbf{SNR}(\mu)$ and **area** (i.e. cost)

All three codes publicly available!

Alina Sabyr, Columbia University

3https://github.com/asabyr/specter_optimization 1 <https://github.com/csierra2/bolocalc-space> ²https://github.com/asabyr/sd_foregrounds_optimize

y-distortion: $y=1.77 \times 10^{-6}$ $k_{B}T_{\text{eSZ}}$ =1.245 keV

Intracluster medium + intergalactic medium + reionization contributions based on halo model/simulations (Hill+2015).

μ-distortion:

μ =2 x 10⁻⁸

Consistent with current constraints on the primordial power spectrum (e.g., Chluba+2012, Cabass+2016).

y-distortion: $y=1.77 \times 10^{-6}$ $k_{B}T_{eSZ}=1.245$ keV

Intracluster medium + intergalactic medium + reionization contributions based on halo model/simulations (Hill+2015).

μ-distortion:

μ =2 x 10⁻⁸

Consistent with current constraints on the primordial power spectrum (e.g., Chluba+2012, Cabass+2016).

Alina Sabyr, Columbia University

Large configuration space to explore!

(1) Find optimal frequency bands

- **→** Start with **narrow frequency bands**.
- \rightarrow Combine and pick the most optimal band combination.

(1) Find optimal frequency bands

- \rightarrow Start with narrow frequency bands.
- \rightarrow Combine and pick the most optimal band combination.

(2) Optimize detector counts

>5 million Fisher calculations

- \rightarrow Optimized set-up is **not a singular** best point!
- \rightarrow Configurations near 50 are the most expensive!

parameter &	16-band optimized 34-band multichroic			
fiducial value	SNR		SNR	
$\Delta_T = 1.2 \times 10^{-4}$				$(3715\sqrt{3.2\times10^{-9}})30378$ 4.0 $\times10^{-9}$
$\mu = 2 \times 10^{-8}$		4.0×10^{-9}	4.5	4.4×10^{-9}
$y = 1.77 \times 10^{-6}$	955	$h.9 \times 10^{-9}$	807	2.2×10^{-9}
$k_B T_{eSZ} = 1.245 \text{ keV}$	33	0.037	42	0.029

TABLE III. Forecasts for the four CMB parameters using the 16band optimized and 34-band multichroic set-ups assuming $t_{\text{obs}} = 1$ year. We list the fiducial values, SNRs, and the Fisher error bars.

parameter $\&$			16-band optimized 34-band multichroic	
fiducial value	SNR		SNR	
$\Delta_T = 1.2 \times 10^{-4}$		74313 \ 1.6×10^{-9} 60757 2.0×10^{-9}		
$\mu = 2 \times 10^{-8}$		2.0×10^{-9}		2.2×10^{-9}
$y = 1.77 \times 10^{-6}$	1911	$\frac{1}{2}$.3 × 10 ⁻¹⁰	1615	1.1×10^{-9}
$k_B T_{eSZ} = 1.245 \text{ keV}$			85	0.015

TABLE IV. Same as Table III, but for $t_{obs} = 4$ years.

Alina Sabyr, Columbia University 34-band multichroic: more frequency resolution at no additional cost!

Sky model robustness: to what extent do the results depend on the fiducial sky model?

- \rightarrow Vary foreground spectral parameters (e.g., ~16000 combinations)
- \rightarrow Can obtain higher SNR!
- \rightarrow Higher frequency resolution + longer observation time \rightarrow more robust to sky modeling assumptions.

e.g., 34-band multichroic + t_{obs} =4 years: < 1% chance of < 5σ detection!

A new constraint on the y-distortion with FIRAS

with Giulio Fabbian, Colin Hill, Federico Bianchini (Sabyr+in prep. 2024c, Fabbian+in prep. 2024)

A new constraint on the y-distortion with FIRAS

with Giulio Fabbian, Colin Hill, Federico Bianchini (Sabyr+in prep. 2024c, Fabbian+in prep. 2024)

Motivation:

- (1) validate current Fisher forecasts (e.g., SPECTER, PIXIE, Voyage 2050)
- (2) compare analysis techniques (pixel-by-pixel vs. frequency monopole)

A new constraint on the y-distortion with FIRAS

with Giulio Fabbian, Colin Hill, Federico Bianchini (Sabvr+in prep. 2024c, Fabbian+in prep. 2024)

Motivation:

(1) validate current Fisher forecasts (e.g., SPECTER, PIXIE, Voyage 2050)

(2) compare analysis techniques (pixel-by-pixel vs. frequency monopole)

Ingredients:

- 1. Sky model. $I_{\nu}^{sky} = \Delta B_{\nu} + I_{\nu}^{y} + I_{\nu}^{\text{fg}}$.
- 2. FIRAS Covariance:

$$
\mathbb{C}_{\nu p \nu' p'} = \text{Cov}(\hat{I}_{\nu p}^{\text{FIRAS}}, \hat{I}_{\nu' p'}^{\text{FIRAS}})
$$

= $C_{\nu \nu'} (\delta_{p p'}/N_p + \beta_p^k \beta_{p' k} + 0.04^2)$ noise
+ $S_{p \nu} S_{p' \nu'} (J_{\nu} J_{\nu'} + G_{\nu} G_{\nu} \delta_{\nu \nu'})$ gain errors
+ $P_{\nu} P_{\nu'} (U^2 \delta_{p p'}/N_p + T^2)$. systematics

3. FIRAS sky maps:

 \sim 68 GHz – 3 THz (Δv = 13 GHz, 210 frequency channels)

 \sim 3.5 \degree resolution

Frequency monopole – fitting sky-averaged spectrum. Pixel-by-pixel – fitting spectra in each pixel.

Data:

Frequency ranges:

- v_{600} : 27 channels, 95-626 GHz
- v_{800} : 36 channels, 95-626 GHz and 653-789 GHz

Three averaging methods for the frequency monopole:

- inv_cov–inverse covariance (instrumental noise + systematics)
- Inv var inverse variance (instrumental noise + systematics)
- inv cov C inverse covariance (instrumental noise)

Masks: P20, P40, P60

Alina Sabyr, Columbia University

preliminary

- \rightarrow Gaussian likelihood.
- ➔ Covariance– frequency-frequency correlation from instrumental noise
- \rightarrow NUTS + emcee

Results from Mocks

Frequency Monopole Mock Results P40, v_{600} , inv var, const dust-P60, v_{600} , inv var, const dust P40, v_{600} , inv cov, const dust -P60, v_{600} , inv cov, const dust -P40, v₆₀₀, inv_cov_C, const dust P60, v₆₀₀, inv_cov_C, const dust -P40, v_{600} , inv cov C, all fgs P60, v_{600} , inv_cov_C, all fgs P40, v_{600} , inv var, non - zero y P60, v_{600} , inv var, non - zero y P40, v_{600} , inv var, all fgs P60, v_{600} , inv var, all fgs P40, v_{800} , inv_var, const dust P60, v_{800} , inv var, const dust-P40, v_{800} , inv var, all fgs P60, v_{800} , inv var, all fgs -20 20 -10 10 $(y) - (y)_{\text{mock}} \times 10^6$

- Adopt inv_var method for the *frequency monopole*.
- Adopt flat priors for the dust in the *pixel-by-pixel* method.

preliminary

Results from data: frequency monopole

Method comparison:

pixel-by-pixel –

 \sim **3-4x** tighter constraints than from

the frequency monopole

Fisher forecast validation:

Great agreement (within $~10\%$) between Fisher forecasts and the results from frequency monopole!

Alina Sabyr, Columbia University preliminary

Interpretation:

Fabbian+in prep. 2024

Stay tuned!

Alina Sabyr, Columbia University preliminary

Summary:

- \rightarrow SPECTER can detect **µ-distortion** \rightarrow probe early Universe/fundamental physics!
- \rightarrow Fisher forecast approach validated with FIRAS data.
- \rightarrow Better constraints can be achieved using spatial information \rightarrow forecasts are conservative.

What is next?

- ➔The cost is driven by the **lowest-frequency bands.** Can we obtain 1.5-3.5 GHz absolute temperature calibrated observations from the **ground**?
- \rightarrow Further development of the **instrumentation** & **forecast set-up.**
- \rightarrow Prototype y-distortion mission.

Future cosmology with CMB spectral distortions and secondaries

Constraining cosmology with the thermal Sunyaev-Zel'dovich maps: Minkowski functionals, peaks, minima, and moments with Colin Hill, Zoltan Haiman (arXiv:2409.12188)

- → Thermal Sunyaev-Zel'dovich (tSZ) effect inverse-Compton scattering of CMB photons off of free, energetic electrons.
- ➔ Sourced by galaxy groups & clusters:
	- Powerful cosmological & astrophysical probe σ_8 , M_{ν} , w (e.g., see Komatsu & Seljak 2002, Hill & Pajer 2013, Bolliet+2018)
	- Highly **non-Gaussian.**
	- Can be used via **cluster counts & statistically**.

unique spectral signature \rightarrow component-separated maps!

What is the optimal tSZ summary statistic?

➔ power spectrum $\ell \in \{25, 7925\}$

Alina Sabyr, Columbia University Computed via LensTools (Petri 2016)<https://github.com/apetri/LensTools>³⁴

 \rightarrow power spectrum

 \rightarrow Minkowski functionals (MFs) – V_o \sim area, V₁ \sim contour length, V₂ \sim genus

Hadwiger's theorem: D+1 MFs fully characterize morphological properties.

Alina Sabyr, Columbia University Computed via LensTools (Petri 2016)<https://github.com/apetri/LensTools>³⁵

- \rightarrow power spectrum
- \rightarrow Minkowski functionals (MFs) V_o \sim area, V₁ \sim contour length, V₂ \sim genus
- \rightarrow **peaks** local maxima points
- \rightarrow minima local minima points

Alina Sabyr, Columbia University Computed via LensTools (Petri 2016)<https://github.com/apetri/LensTools>³⁶

- \rightarrow power spectrum
- \rightarrow Minkowski functionals (MFs) V_o \sim area, V₁ \sim contour length, V₂ \sim genus
- \rightarrow **peaks** local maxima points
- \rightarrow minima local minima points
- \rightarrow moments 2 quadratic, 1 cubic, 1 quartic

$$
\sigma_0 = \sqrt{\langle y^2 \rangle}, \quad \sigma_1 = \sqrt{\langle |\nabla y|^2 \rangle}
$$

$$
S_1 = \langle y^2 \nabla^2 y \rangle \quad K_1 = \langle y^3 \nabla^2 y \rangle
$$

From perturbative expansion of MFs up to 2nd order in variance

> (see Tomita 1986, Matsubara 2000, Matsubara 2010).

limit to four moments due to challenges wrt to convergence

Alina Sabyr, Columbia University Computed via LensTools (Petri 2016)<https://github.com/apetri/LensTools>³⁷

Simulation suite:

 \rightarrow Simplified tSZ maps generated using **hmpdf**¹ Poisson sample halos from Tinker+2010. Pressure profile from Battaglia+2012 \rightarrow 10.5 x 10.5 deg² (6321 x 6321 pixels)

➔ 0.1 arcmin resolution

1 <https://github.com/leanderthiele/hmpdf> (Thiele+2019) Alina Sabyr, Columbia University ³⁸

Simulation suite:

 \rightarrow fiducial: $\Omega_{\rm c} = 0.264$, $\sigma_{\rm g} = 0.811$ \rightarrow 154 cosmologies ~34,560 realizations for the fiducial ~5,112 per each other cosmology

>800,000 maps in total!

Simulation suite:

Simulation suite \rightarrow constraints

- 1. Compute the statistic(s) across all maps.
- 2. Interpolate each statistic on a $\Omega_{\rm c}$ x $\sigma_{\rm 8}$ grid (10⁶ points)
- 3. Compute the likelihood at each point.

Gaussian likelihood + cosmology-independent covariance computed at the fiducial cosmology (Carron 2013, Darsh+2019)

Constraints: Noiseless 10.5 x 10.5 deg² maps (smoothed with θ_{FWHM} =1.4 arcmin)

Constraints tighter than from the power spectrum alone by

+MFs: x23

+peaks: x3.4

+minima: x1.9

+moments: x1.2

all descriptors: x29

Constraints: Noiseless 10.5 x 10.5 deg² maps (smoothed with θ_{FWHM} =1.4 arcmin)

Constraints are driven by the combination of MFs and in particular, V_1 and V_2 .

- \rightarrow Most massive halos contribute more to the variance.
- \rightarrow Masking the most massive halos \rightarrow can improve the constraints (e.g. 20% better if >5 x $10^{14}M_{\odot}$ halos are not included).
- ➔ Suggests promising synergies with cluster count analyses!

(1) tSZ map + θ_{FWHM} =1.4 arcmin smoothing (2) + $\ell \leq 80$, $\ell \geq 7950$ filtered out

Adding noise:

 -10^{-5}

 -10^{-6}

 $\vert 0 \vert$

 -10^{-6}

 $y-\bar{y}$

Constraints:

+ Noise (Simons Observatory post-component separation tSZ noise power spectra)

Constraints tighter than from the power spectrum alone by

+MFs: x1.7

all descriptors: x1.8

Constraints:

+ Noise (Simons Observatory post-component separation tSZ noise power spectra)

$$
\mathbf{f}_{\text{sky}} = \mathbf{0.4}
$$

Error on the best constrained parameter combination:

 $S_8 = \sigma_8(\Omega_c/0.264)^\alpha$ where $\alpha = 0.07 - 0.1$

power spectrum: ~0.06% MFs: ~0.04%

➔ Degeneracy broken with CMB-S4 noise.

 \rightarrow White noise 0.1-1 μ K-arcmin – close to noiseless constraints!

Summary:

 \rightarrow Significant non-Gaussian information in the tSZ maps

 $(\sim$ **30x/2x** improvement in the **noiseless/noisy** cases)!

- \rightarrow MFs substantially outperform other summary statistics.
- \rightarrow Ideal time for applying these statistics (relevant to white noise levels of 0.1-1 μ K-arcmin).

➔ Follow-up work:

- Exploring sensitivity to the **pressure profile** parameters.
- Characterizing the **full information content** of the tSZ field via convolutional neural networks (CNNs).

Fisher & fiducial simulations + summary statistics are publicly available at <https://columbialensing.github.io/>! Pipeline available at: https://github.com/asabyr/tSZ_NG