Future cosmology with CMB spectral distortions and secondaries

Alina Sabyr

with Colin Hill, Zoltan Haiman, Carlos Sierra, Jeffrey J. McMahon, Giulio Fabbian, Federico Bianchini

INPA seminar, 06/12/2024

Future cosmology with CMB <u>spectral distortions</u> and secondaries

small deviations of the CMB energy spectrum from that of a perfect blackbody.

Compton scattering, double-Compton & bremsstrahlung emission → maintain thermal equilibrium

Compton scattering still efficient

 $\mu\text{-distortion} \rightarrow \text{fundamental physics}$

<u> μ -distortion \rightarrow fundamental physics</u>

Chluba+2019, Chluba+2021

- → Generated in the **early Universe**.
- → Within ACDM: **Silk damping** & baryon cooling
- → Sensitive to primordial power spectrum on small scales.

$$\mu \rangle \approx \int \frac{k^2 \,\mathrm{d}k}{2\pi^2} P(k) W_{\mu}(k) \quad e.g., Chluba+2012, Chluba+2015$$

 $\textbf{y-distortion} \rightarrow \textbf{astrophysics}$

<u>y-distortion \rightarrow astrophysics</u>

- → Known source: thermal Sunyaev-Zel'dovich effect (tSZ) – inverse Compton scattering of CMB photons on free, energetic electrons, primarily in galaxy groups & clusters.
- → Probes the **late-time Universe**.
- → Total thermal energy + mean temperature of electrons.

CMB spectral distortions: current status

Upper limits from *COBE/FIRAS* (flew in **1990's**!):

- → $\langle y \rangle$: < 15 x 10⁻⁶ (Fixsen+1996)
- → $\langle \mu \rangle$: < 90 x 10⁻⁶ (Fixsen+1996), < 47 x 10⁻⁶ (Bianchini & Fabbian 2022)

CMB spectral distortions: current status

Upper limits from *COBE/FIRAS* (flew in **1990's**!):

- → $\langle y \rangle$: < 15 x 10⁻⁶ (Fixsen+1996)
- → $\langle \mu \rangle$: < 90 x 10⁻⁶ (Fixsen+1996), < 47 x 10⁻⁶ (Bianchini & Fabbian 2022)

Why are there no additional direct and recent constraints?

- → Need absolute temperature calibrated spectrum.
- → Astrophysical **foregrounds**.

Alina Sabyr, Columbia University

Abitbol+2017

SPECTER: An Instrument Concept for a Spectral Distortion Measurement with Enhanced Sensitivity.

with Carlos Sierra, Colin Hill, Jeffrey J. McMahon **arXiv:2409.12188**

<u>Key idea:</u>

Optimize **frequency bands** and their **individual sensitivities** to target the μ -distortion.

Ingredients:

- → Sensitivity calculator: **bolocalc-space**¹ (based on BoloCalc, Hill+2018)
 - HEMT amplifiers at v < 10 GHz; bolometers at v > 10 GHz.

Ingredients:

- → Sensitivity calculator: bolocalc-space¹ (based on BoloCalc, Hill+2018)
 - **HEMT** amplifiers at v < 10 GHz; bolometers at v > 10 GHz.
- → Fisher-forecast set-up: sd_foregrounds_optimize² (modified version of sd_foregrounds, Abitbol+2017)
 - <u>CMB signals</u>: blackbody deviation, μ-distortion, y-distortion, rel. corr. to y-distortion.
 - <u>Foregrounds:</u> Galactic dust, cosmic infrared background, Galactic synchrotron, free-free, spinning dust, CO.
 - ◆ Total **16 free parameters**.

Total sky signal:
$$I_{\nu} = \Delta B_{\nu} + I_{\nu}^{\nu} + I_{\nu}^{\text{rel}-\text{tSZ}} + I_{\nu}^{\mu} + I_{\nu}^{\text{fg}}.$$

Fisher matrix:
$$F_{ij} = \sum_{\mathbf{v},\mathbf{v}'} \frac{\partial I_{\mathbf{v}}}{\partial p_i} C_{\mathbf{v}\mathbf{v}'}^{-1} \frac{\partial I_{\mathbf{v}}}{\partial p_j}$$

¹<u>https://github.com/csierra2/bolocalc-space</u> ²<u>https://github.com/asabyr/sd_foregrounds_optimize</u>

Ingredients:

- → Sensitivity calculator: bolocalc-space¹ (based on BoloCalc, Hill+2018)
 - **HEMT** amplifiers at v < 10 GHz; bolometers at v > 10 GHz.
- → Fisher-forecast set-up: sd_foregrounds_optimize² (modified version of sd_foregrounds, Abitbol+2017)
 - <u>CMB signals</u>: blackbody deviation, μ-distortion, y-distortion, rel. corr. to y-distortion.
 - <u>Foregrounds:</u> Galactic dust, cosmic infrared background, Galactic synchrotron, free-free, spinning dust, CO.
 - ◆ Total **16 free parameters.**
- → Optimization/robustness tests pipeline: specter_optimization³ Assess the set-up via SNR(µ) and area (i.e. cost)

All three codes publicly available!

Alina Sabyr, Columbia University

¹<u>https://github.com/csierra2/bolocalc-space</u> ²<u>https://github.com/asabyr/sd_foregrounds_optimize</u> ³<u>https://github.com/asabyr/specter_optimization</u>

y-distortion: y=1.77 x 10⁻⁶ $k_B T_{eSZ}$ =1.245 keV

Intracluster medium + intergalactic medium + reionization contributions based on halo model/simulations (Hill+2015).

μ-distortion:

μ=2 x 10⁻⁸

Consistent with current constraints on the primordial power spectrum (e.g., Chluba+2012, Cabass+2016).

y-distortion: y=1.77 x 10⁻⁶ k_BT_{eSZ}=1.245 keV

Intracluster medium + intergalactic medium + reionization contributions based on halo model/simulations (Hill+2015).

μ-distortion:

μ=2 x 10⁻⁸

Consistent with current constraints on the primordial power spectrum (e.g., Chluba+2012, Cabass+2016).

Alina Sabyr, Columbia University

Large configuration space to explore!

(1) Find optimal frequency bands

- → Start with **narrow frequency bands**.
- → Combine and pick the most optimal band combination.

(1) Find optimal frequency bands

- → Start with **narrow frequency bands**.
- → Combine and pick the most optimal band combination.

(2) Optimize detector counts

>5 million Fisher calculations

- → Optimized set-up is **not a singular** best point!
- → Configurations near 5σ are the most expensive!

parameter &	16-band optimized 34-band multichroic				
fiducial value	SNR	σ	SNR	σ	
$\Delta_T = 1.2 \times 10^{-4}$	37157	3.2×10^{-9}	30378	4.0×10^{-9}	
$\mu = 2 \times 10^{-8}$	5	4.0×10^{-9}	4.5	4.4×10^{-9}	
$y = 1.77 \times 10^{-6}$	955	1.9×10^{-9}	807	2.2×10^{-9}	
$k_{\rm B}T_{eSZ} = 1.245 \text{ keV}$	33	0.037	42	0.029	

TABLE III. Forecasts for the four CMB parameters using the 16band optimized and 34-band multichroic set-ups assuming $t_{obs} = 1$ year. We list the fiducial values, SNRs, and the Fisher error bars.

parameter &	16-band optimized		34-band multichroic	
fiducial value	SNR	σ	SNR	σ
$\Delta_T = 1.2 \times 10^{-4}$	74313	1.6×10^{-9}	60757	2.0×10^{-9}
$\mu = 2 \times 10^{-8}$	10	2.0×10^{-9}	9	$2.2 imes 10^{-9}$
$y = 1.77 \times 10^{-6}$	1911	9.3×10^{-10}	1615	1.1×10^{-9}
$k_{\rm B}T_{eSZ} = 1.245 \text{ keV}$	67	0.019	85	0.015

TABLE IV. Same as Table III, but for $t_{obs} = 4$ years.

34-band multichroic: more frequency resolution at no additional cost!

Alina Sabyr, Columbia University

Sky model robustness: to what extent do the results depend on the fiducial sky model?

→ Vary foreground spectral parameters (e.g., ~16000 combinations)

- → Can obtain **higher** SNR!
- → Higher frequency resolution + longer observation time → more robust to sky modeling assumptions.

e.g., 34-band multichroic + t_{obs}=4 years: < **1% chance of** < **5σ detection**!

A new constraint on the y-distortion with FIRAS

with Giulio Fabbian, Colin Hill, Federico Bianchini (Sabyr+in prep. 2024c, Fabbian+in prep. 2024)

A new constraint on the y-distortion with FIRAS

with Giulio Fabbian, Colin Hill, Federico Bianchini (**Sabyr+in prep. 2024c**, Fabbian+in prep. 2024) *Motivation:*

- (1) validate current Fisher forecasts (e.g., SPECTER, PIXIE, Voyage 2050)
- (2) compare analysis techniques (*pixel-by-pixel* vs. *frequency monopole*)

A new constraint on the y-distortion with FIRAS

with Giulio Fabbian, Colin Hill, Federico Bianchini (**Sabyr+in prep. 2024c**, Fabbian+in prep. 2024)

Motivation:

(1) validate current Fisher forecasts (e.g., SPECTER, PIXIE, Voyage 2050)

(2) compare analysis techniques (pixel-by-pixel vs. frequency monopole)

Ingredients:

- 1. <u>Sky model.</u> $I_{\nu}^{sky} = \Delta B_{\nu} + I_{\nu}^{y} + I_{\nu}^{\text{fg}}.$
- 2. FIRAS Covariance:

$$\begin{split} \mathbb{C}_{\nu p \nu' p'} &= \operatorname{Cov}(\hat{I}_{\nu p}^{\mathrm{FIRAS}}, \hat{I}_{\nu' p'}^{\mathrm{FIRAS}}) \\ &= C_{\nu \nu'} \left(\delta_{p p'} / N_p + \beta_p^k \beta_{p' k} + 0.04^2 \right) \text{ noise} \\ &+ S_{p \nu} S_{p' \nu'} \left(J_{\nu} J_{\nu'} + G_{\nu} G_{\nu} \delta_{\nu \nu'} \right) \text{ gain errors} \\ &+ P_{\nu} P_{\nu'} \left(U^2 \delta_{p p'} / N_p + T^2 \right). \quad \text{systematics} \end{split}$$

3. FIRAS sky maps:

~68 GHz – 3 THz (Δv = 13 GHz, 210 frequency channels)

 $\sim 3.5^{\circ}$ resolution

Frequency monopole – fitting sky-averaged spectrum. *Pixel-by-pixel* – fitting spectra in each pixel.

Data:

Frequency ranges:

- **v**₆₀₀: 27 channels, 95-626 GHz
- **v**₈₀₀: 36 channels, 95-626 GHz and 653-789 GHz

Three averaging methods for the *frequency monopole*:

- **inv_cov**-inverse covariance (instrumental noise + systematics)
- **Inv_var** inverse variance (instrumental noise + systematics)
- **inv_cov_C** inverse covariance (instrumental noise)

Masks: P20, P40, P60

Alina Sabyr, Columbia University

preliminary

\rightarrow Gaussian likelihood.

- → Covariance- frequency-frequency correlation from instrumental noise
- \rightarrow NUTS + emcee

Results from Mocks

- → Adopt **inv_var** method for the *frequency monopole*.
- \rightarrow Adopt flat priors for the dust in the *pixel-by-pixel* method.

preliminary

Results from data: *frequency monopole*

Method comparison:

pixel-by-pixel –

 \sim **3-4**x tighter constraints than from

the *frequency monopole*

Fisher forecast validation:

Great agreement (within ~10%) between Fisher forecasts and the results from *frequency monopole*!

preliminary

Interpretation:

Fabbian+in prep. 2024

Stay tuned!

Alina Sabyr, Columbia University

preliminary

Summary:

- → *SPECTER* can detect μ -distortion \rightarrow probe early Universe/fundamental physics!
- → Fisher forecast approach **validated with** *FIRAS* data.
- → Better constraints can be achieved using spatial information → forecasts are conservative.

What is next?

- → The cost is driven by the **lowest-frequency bands.** Can we obtain 1.5-3.5 GHz absolute temperature calibrated observations from the **ground**?
- → Further development of the **instrumentation** & **forecast set-up**.
- → **Prototype** y-distortion mission.

Future cosmology with CMB spectral distortions and <u>secondaries</u>

Constraining cosmology with the thermal Sunyaev-Zel'dovich maps: Minkowski functionals, peaks, minima, and moments with Colin Hill, Zoltan Haiman (**arXiv:2409.12188**)

- → Thermal Sunyaev-Zel'dovich (tSZ) effect inverse-Compton scattering of CMB photons off of free, energetic electrons.
- → Sourced by **galaxy groups & clusters**:
 - Powerful cosmological & astrophysical probe σ_8 , M_{ν} , w (e.g., see Komatsu & Seljak 2002, Hill & Pajer 2013, Bolliet+2018)
 - Highly **non-Gaussian**.
 - Can be used via **cluster counts** & **statistically**.

unique spectral signature \rightarrow component-separated maps!

What is the optimal tSZ summary statistic?

→ power spectrum $\ell \in \{25, 7925\}$

Alina Sabyr, Columbia University

Computed via LensTools (Petri 2016) <u>https://github.com/apetri/LensTools</u>³⁴

→ power spectrum

→ Minkowski functionals (MFs) – $V_0 \sim area$, $V_1 \sim contour length$, $V_2 \sim genus$

Hadwiger's theorem: D+1 MFs fully characterize morphological properties.

Alina Sabyr, Columbia University

Computed via LensTools (Petri 2016) <u>https://github.com/apetri/LensTools</u>³⁵

- → power spectrum
- → Minkowski functionals (MFs) $V_0 \sim area$, $V_1 \sim contour length$, $V_2 \sim genus$
- → **peaks** local maxima points
- → minima local minima points

Alina Sabyr, Columbia University

Computed via LensTools (Petri 2016) <u>https://github.com/apetri/LensTools</u>³⁶

- → power spectrum
- → Minkowski functionals (MFs) $V_0 \sim area$, $V_1 \sim contour length$, $V_2 \sim genus$
- → **peaks** local maxima points
- → **minima** local minima points
- → **moments** 2 quadratic, 1 cubic, 1 quartic

$$\sigma_0 = \sqrt{\langle y^2 \rangle}, \quad \sigma_1 = \sqrt{\langle |\nabla y|^2 \rangle}$$
 $S_1 = \langle y^2 \nabla^2 y \rangle \quad K_1 = \langle y^3 \nabla^2 y \rangle$

From perturbative expansion of MFs up to 2nd order in variance

(see Tomita 1986, Matsubara 2000, Matsubara 2010).

limit to four moments due to challenges wrt to convergence

University Computed via LensTools (Petri 2016) <u>https://github.com/apetri/LensTools</u>

Simulation suite:

- → Simplified tSZ maps generated using hmpdf¹
 ◆ Poisson sample halos from *Tinker+2010*.
 ◆ Pressure profile from *Battaglia+2012* → 10.5 x 10.5 deg² (6321 x 6321 pixels)
 - ➤ 0.1 arcmin resolution

Alina Sabyr, Columbia University

¹<u>https://github.com/leanderthiele/hmpdf</u> (*Thiele+2019*) ³⁸

Simulation suite:

→ fiducial: Ω_c=0.264, σ₈=0.811
 → 154 cosmologies
 ~34,560 realizations for the fiducial
 ~5,112 per each other cosmology

>800,000 maps in total!

Simulation suite:

Simulation suite \rightarrow constraints

- 1. Compute the statistic(s) across all maps.
- 2. Interpolate each statistic on a $\Omega_{c} x \sigma_{8}$ grid (10⁶ points)
- 3. Compute the likelihood at each point.

Gaussian likelihood + cosmology-independent covariance computed at the fiducial cosmology (Carron 2013, Darsh+2019)

Constraints: Noiseless 10.5 x 10.5 deg² maps (smoothed with θ_{FWHM} =1.4 arcmin)

Constraints tighter than from the power spectrum alone by

+MFs: x23

+peaks: x3.4

+minima: x1.9

+moments: x1.2

all descriptors: x29

Constraints: Noiseless 10.5 x 10.5 deg² maps (smoothed with θ_{FWHM} =1.4 arcmin)

Constraints are driven by the <u>combination</u> of MFs and in particular, V_1 and V_2 .

Alina Sabyr, Columbia University

- \rightarrow Most massive halos contribute more to the variance.
- → Masking the most massive halos \rightarrow can improve the constraints (e.g. 20% better if >5 x 10¹⁴ M_☉ halos are not included).
- \rightarrow Suggests promising synergies with cluster count analyses!

(1) tSZ map + θ_{FWHM} =1.4 arcmin smoothing (2) + $\ell \leq 80, \ell \geq 7950$ filtered out

Adding noise:

 -10^{-5}

 -10^{-6}

- 0

 -10^{-6}

y-y

Constraints:

+ Noise (Simons Observatory post-component separation tSZ noise power spectra)

Constraints tighter than from the power spectrum alone by

+MFs: x1.7

all descriptors: x1.8

Constraints:

+ Noise (Simons Observatory post-component separation tSZ noise power spectra)

Error on the best constrained parameter combination:

 $S_8 = \sigma_8 (\Omega_c / 0.264)^{\alpha}$ where $\alpha = 0.07 - 0.1$

power spectrum: ~0.06% MFs: ~0.04%

→ Degeneracy broken with CMB-S4 noise.

→ White noise 0.1-1 µK-arcmin
 - close to noiseless
 constraints!

Summary:

→ Significant non-Gaussian information in the tSZ maps

(~30x/2x improvement in the noiseless/noisy cases)!

- → **MFs** substantially **outperform** other summary statistics.
- → **Ideal time** for applying these statistics (relevant to white noise levels of $0.1-1\mu$ K-arcmin).

→ Follow-up work:

- Exploring sensitivity to the *pressure profile* parameters.
- Characterizing the **full information content** of the tSZ field via convolutional neural networks (CNNs).

Fisher & fiducial simulations + summary statistics are publicly available at <u>https://columbialensing.github.io/</u>! Pipeline available at: <u>https://github.com/asabyr/tSZ_NG</u>