SEARCHING FOR THE FUNDAMENTAL NATURE OF DARK MATTER IN THE COSMIC LARGE-SCALE STRUCTURE

Keir K. Rogers

Dunlap Fellow, Dunlap Institute for Astronomy & Astrophysics, University of Toronto

Find dark matter by only known interaction — gravity — trace dark matter by galaxies & intergalactic gas

Beyond the WIMP: dark matter model space

The technological frontier in dark matter direct detection is sub-GeV

APPEC committee report (2021)

Light (sub-GeV) particle dark matter collisionally dampens growth of small-scale structure

Chen et al. (2002); Dvorkin et al. (2014); Rogers et al. (Phys. Rev. Lett., 2022)

Beyond the WIMP: dark matter model space

Axions are dark energy and dark matter candidates

• $m_a = 10^{-33} \text{ eV}$: cosmological constant

Figure credit: Pargner (2019); Peccei & Quinn (1977); Weinberg (1978); Wilczek (1978)

Axion-like particles abundantly produced in high-energy theory

- Axion-like particles widely formed in BSM theories, inc. string models
- Axiverse of different mass axions from spacetime compactification
- One/more string axions can be DM

Wave vs particle dark matter

Mocz et al. (2019)

Ultra-light axions are invoked to resolve so-called cold dark matter "small-scale crisis"

Figure credit: Armengaud et al. (2017); Hu et al. (2000)

Larger scales

• CMB Planck TT, TE, EE+lowE · Aghanim et al. (2020d) • CMB Planck TT, TE, EE+lowE+lensing · Aghanim et al. (2020d) • CMB ACT+WMAP · Aiola et al. (2020) Early Universe Late Universe • WL KiDS-1000 Asgari et al. (2021) • WL KiDS+VIKING+DES-Y1 Asgari et al. (2020) Joudaki et al. (2020) • WL KiDS+VIKING+DES-Y1 • WL KiDS+VIKING-450 Wright et al. (2020) Hildebrandt et al. (2020) • WL KiDS+VIKING-450 0.651 • WL KiDS-450 Kohlinger et al. (2017) • WL KiDS-450 Hildebrandt et al. (2017) • WL DES-Y3 Amon et al. and Secco et al. (2021) • WL DES-Y1 Troxel et al. (2018) • WL HSC-TPCF Hamana et al. (2020) • WL HSC-pseudo-Cl Hikage et al. (2019) • WL CFHTLenS Joudaki et al. (2017) • WL+GC HSC+BOSS Miyatake et al. (2022) 0.7781 • WL+GC+CMBL KiDS+DES+eBOSS+Planck García-García et al. (2021) 0.766 • WL+GC KiDS-1000 3×2pt Heymans et al. (2021) 0.742 • WL+GC KiDS-450 3×2pt Joudaki et al. (2018) • WL+GC DES-Y3 3×2pt Abbott et al. (2021) • WL+GC DES-Y1 3×2pt Abbott et al. (2018d) • WL+GC KiDS+VIKING-450+BOSS Tröster et al. (2020) • WL+GC KiDS+GAMA 3x2pt van Uitert et al. (2018) Philcox et al. (2021) • GC BOSS DR12 bispectrum GC BOSS+eBOSS Ivanov et al. (2021) Chen et al. (2021) • GC BOSS power spectra • GC BOSS DR12 Tröster et al. (2020) • GC BOSS galaxy power spectrum Ivanov et al. (2020) • GC+CMBL DELS+Planck White et al. (2022) • GC+CMBL unWISE+Planck Krolewski et al. (2021) CC AMICO KiDS–DR3 · Lesci et al. (2021) • CC DES-Y1 Abbott et al. (2020d) CC SDSS–DR8 Costanzi et al. (2019) • CC XMM-XXL Pacaud et al. (2018) • CC ROSAT (WtG) Mantz et al. (2015) • CC SPT tSZ Bocquet et al. (2019) • CC Planck tSZ Salvati et al. (2018) CC Planck tSZ · Ade et al. (2016d) • RSD [•] Benisty (2021) • RSD Kazantzidis and Perivolaropoulos (2018) 1.2 0.4 0.8 1.0 0.2 0.6

Smaller scales

$S_8 \sim \text{amplitude of density fluctuations at 8 Mpc/h}$

Abdalla et al. (Snowmass 2022)

S₈

tension

$$\lambda_{\rm Jeans} = 9.4 \, (1+z)^{\frac{1}{4}} \, \left(\frac{M_{\rm a} h^2}{0.12}\right)^{-4} \, \left(\frac{m}{10^{-26} \, {\rm eV}}\right)^{-\frac{1}{2}} \, {\rm Mpc}$$

Laguë, Bond, Hložek, Rogers, Marsh, Grin (JCAP, 2022)

Axions lower S₈

AXIONEMU: NEURAL NETWORK EMULATOR OF AXION POWER SPECTRA

with Anran Xu

https://github.com/keirkwame/axionEmu

Neural net emulators will accelerate next-generation data analyses in GPU-heavy computing landscape

17

- Modified TensorFlow Planck CMB likelihood code
- GPU-accelerated Markov chain Monte Carlo sampling
- 30 hours \rightarrow 10 seconds

Anran Xu & Keir Rogers (in prep, 2023)

JOINT CONSTRAINTS ON ULTRA-LIGHT AXIONS FROM CMB & GALAXY SURVEYS

arXiv: 2301.08361 JCAP, 01, 049, 2022 MNRAS, 515, 5646, 2022 h Waxay Dhilagy Cabago Akitow March Pa

with Hložek, Laguë, Ivanov, Philcox, Cabass, Akitsu, Marsh, Bond, Dentler, Grin

DE-like axions constrained by CMB acoustic oscillations & lensing potential

$$m_{\mathrm{a}} \leq 10^{-26} \, \mathrm{eV}$$

Sloan Digital Sky Survey maps galaxies and intergalactic gas towards edge of observable Universe

Model galaxy clustering into mildly non-linear regime with effective field theory of large-scale structure

$$P_{\ell}(k) = P_{\ell}^{\text{Tree}}(k) + P_{\ell}^{1-\text{loop}}(k) + P_{\ell}^{\text{Counter}}(k) + P_{\ell}^{\text{Stoch}}(k)$$

$$\downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\text{Linear theory} \quad Perturbation \qquad Ultraviolet \qquad Stochastic \\ \text{counterterms} \quad \text{counterterms} \quad \text{(shot noise/RSD)} \\ \boldsymbol{\propto} \ P^{\text{Linear}}(k) \quad \boldsymbol{\propto} \ k^2 \ P^{\text{Linear}}(k)$$

+ Infrared resummation + Alcock-Paczynski distortion

Rogers, Hložek, et al. (arXiv:2301.08361)², Baumann et al. (2012); Chudaykin et al. (2020)

Galaxy clustering traces dark matter clustering — revealing signature of ultra-light axions

Laguë, Bond, Hložek, Rogers, Marsh, Grin (JCAP, 2022)

Full-shape BOSS galaxy power spectrum increases sensitivity to ultra-light axions

- Planck cosmic microwave background
- BOSS galaxy power spectrum
- BOSS galaxy power spectrum + bispectrum
 - Rogers, Hložek, et al. (arXiv:2301.08361)

Strongest axion limits come from combining cosmic microwave background & galaxy clustering

Joint CMB & galaxy weak lensing limits using axion dark matter halo model

Dentler, Marsh, Hložek, Laguë, Rogers, Grin (MNRAS, 2022)

Lyman-alpha forest probes smallest cosmic scales

Lyman-alpha forest probes smallest cosmic scales — robustly account for range of astrophysical states

- Ly-alpha forest traces DM & intergalactic medium astrophysics
- ~ 3000 CPU-hours per simulation in I2-D parameter space
- \Rightarrow need ML-accelerated emulator

Lukić et al. (2015); Rogers et al. (JCAP, 2019); Rogers & Peiris (Phys. Rev. D, 2021)

DARK MATTER EMULATOR WITH ACTIVE LEARNING

JCAP, 02, 031, 2019 JCAP, 02, 050, 2019 Phys. Rev. D, 103, 043526, 2021 with Peiris, Bird, Pontzen, Verde, Font-Ribera

NEW LIMITS ON DARK MATTER — PROTON INTERACTION

Phys. Rev. Lett., 128, 171301, 2022 Phys. Rev. D, 103, 043526, 2021 with Dvorkin, Peiris

Dark matter limits driven by new small-scale data

Roger³⁴ & Peiris (PRL, 2021); Rogers et al. (PRL, 2022)

Cosmological limits on light (sub-GeV) dark matter highly complementary to direct detection

Rogers et al. (Phys. Rev. Lett., 2022)

STRONG BOUND ON CANONICAL ULTRA-LIGHT AXION DARK MATTER

Phys. Rev. Lett., 126, 071302, 2021 with Peiris

"Canonical" 10-22 - 10-21 eV axion DM is ruled out

Roger³⁷& Peiris (Phys. Rev. Lett., Phys. Rev. D, 2021ab)

Multi-probe approach to detect ultra-light axions

https://keirkwame.github.io/DM_limits

Summary

- New frontier in dark matter detection is light & ultra-light dark matter
- Rule out "small-scale crisis" axion; but axions could resolve S₈ tension
- Machine learning emulator approaches to accelerate next-gen data analyses