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Overview

¢ At early times in structure formation, cold dark matter (CDM) 1s 1n

the single-stream regime that comes with a single-valued velocity

¢ Collisionless nature of CDM leads to crossing of trajectories,

called shell-crossing (where the density 6 = (p — p)/p — )

¢ focus today: use suitable initial conditions to follow

analytically trajectories into the multi-stream regime

¢ 1n the multi-stream regime, particle trajectories exhibit

weakly singular behaviour (e.g. Kinks in the acceleration field)
¢ confirmed by high-resolution N-body simulations

¢ Lastly, a semiclassical approach that is free of singularities
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Analytical insight could assist in...

e closing the gap between theory and numerics
e make numerical simulations more efficient (including fastPM, COLA)

e gather information on counter / UV terms for effective theories



evolution in 1D
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agrees with N-body simulations to very high precision!

acceleration 1s locally not differentiable -> weak singularities in Vlasov-Poisson
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¢ First solve for the single-stream regime since initial conditions for the

multi-stream regime are set at shell-crossing

¢ central object: the Lagrangian map q — x(q,a) = q + &(q, a)

initial position of fluid particles \ displacement field
current position of fluid particles

¢ perturbative framework: Lagrangian perturbation theory (LPT)

where the displacement is expanded in a Taylor series

¢ [Exact analytical solutions in the single-stream regime for
(= representable by converging Taylor series in LPT)

* 1D collapse [Novikov '69, Zel'dovich '69]
e quasi-1D collapse [CR & Frisch 17,
¢ [spherical collapse (tOp hat)] excluding shell-crossing; see later [Peebles ‘67]

e quasi-spherical collapse (perturbed top hat) [CR "17]
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quasi-1D

gognit) = cosqr +0.1smgo
»

initial gravitational potential

Spgnit) — CO0S Q1 + 0.1 sin q2 + 0.1 sin qs
q1 )



LPT solutions at shell-crossing
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[Saga, Taruya & Colombi, PRL 2018]

singular velocity at shell-crossing

“LPT" is Lagrangian perturbation theory
“Q1D" the adapted PT for quasi-1D
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Convergence for generic ICs

¢ Except for singularities in the spherical collapse
(which are removed 1n the quasi-spherical collapse),
LPT is converging, probably even until shell-crossing

¢ For cosmological ICs, only 5/(1+8)|=1|J -1

a lower bound on the radius

of convergence is known shell-crossing

[Zheligovsky & Frisch '14]

analytical

¢ Numerical studies of radius estimate!

of convergence are needed

0.4

¢ If shell-crossing cannot be sl
[CR, Villone & Frisch ‘13]

reached 1n a single time-step:

C.1E 0.2

analytic continuation! ) 005

01
[both in preparation] C (generating function of displacement)
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In Lagrangian coordinates, momentum conservation 1s (ignoring Hubble)

£(qg.a) « - V,0,(x(q, @)

gravitational force (Vigy e d)

x(q,a) |

before Before shell-crossing, for each g-particle
there 1s one final position x. After the

first shell-crossing up to 3 different

q’s point to the same position. (Etc.)

9 non-trivial mass reshuffling (here 1D):

Computation of the gravitational force 1s non-trivial after shell-crossing.
Besides that momentum conservation 1s unchanged. o
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¢ Untl shell-crossing, the gravitational force i1s given by ZA (in 1D).
To leading order, this also holds shortly after (due to momentum conservation)

Tpza(q,a) <X —Vzs(Tza(q,a)) (1)

¢ To determine the force, Taruya & Colombi 17 use a (non-local) Green’s
function approach; some integrals need to be approximated

¢ To exploit the nonlinear power of LPT, we use the local expression

5(a(q, a)) = / 59 [2(q, a) — (¢, )] 43¢ — 1
5() — UYUn 3 7
/Z o 9 —q,] 43¢ —1

Vqx(q,,a)l]

¢ Analytical solutions for (1) are no simple power laws  [see also: Pietroni 18]
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, Fic Hahn , N prp.]
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Singular behaviour can be handled by high-precision methods.
Alternatively, singular features may be regulated by

+» deviating from perfect coldness:
but then never pure single-stream, theoretical modelling complicated,
requires 1n general full-fledged Vlasov-Poisson

< employing semiclassical (Schrodinger-like) descriptions:
% correspondence: Schrodinger — Vlasov for 2 — 0
% h > 0 acts as a softening scale that regulates singularities
% Widrow & Kaiser 93 introduced Schrodinger-Poisson for LSS

% we build on the related but different approach of Short & Coles "06

which we motivate in the following from a QFT perspective

[Uhlemann, CR, Gosenca & Hahn '18]
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[Uhlemann CR, Gosenca& Hahn 18]

¢ propagator for the Zel’dovich approximation: Kya o< exp {%SZ A}

with the ZA action

1 T —q
Sza = §(w —q) -
—— &,_/ q initial po.s%tion at a=0

. . . x final position at a
particle displacement times velocity

¢ K7 propagates a wave function from initial to final state

baa(x;a) = / g K (@, q; 0) 08 (q)

¢ governed by potential-free Schrodinger-type equations

h2 h?
110, Ky = ——VQKZA, ih0,za = ——VQwZA
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ermnn, CR, Gosenca & Hahn ’18]

Solution for the wave function
in 1D (k= 0.01):

=

X-space

A

V free of singularities for A > 0

J some built-in multi-streaming,
appearing as interference pattern

J agrees excellently with classical
Z.A betore shell-crossing

no full-fledged multi-streaming

(no 1nteraction potential)

1 .
a=asc a-time

accurate only for 1D ICs
(doesn’t include tidal interactions)

brightness 1s amplitude o« v'1+ 4,
color the phase of 1za

14



Cornelius Rampf

A semiclassical path to LSS  Lab. Lagrange, Nice
| [Uhlemann CR, Gosenca & Hahn 18]

4+ Let’s include an effective potential Vg

h? h?
ih0, K = ——V2K+V;ﬂcK 170, = ——V%H/effw,

and set for the propagator K o exp {% [

SZA + Sint] }

+ Perturbative solutions for S;,; and thus for K can be obtained,
provided one has a model for Vg

4+ In Uhlemann, CR++ ‘18 we focus on gravitational tidal interactions.
Full-fledged multi-streaming will be done 1n a follow-up work.

4+ To include tidal interactions, we determine Vg by using

standard cosmological perturbation theory
(up to second order, one can equivalently also solve for Ves in the Madelung representation ¢ = /1 + § exp(—i¢/h)

15
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o 7 [Uhlemann CR, Gosenca&th18]

4+ In the classical limit 7 — 0, we recover results from

Lagrangian perturbation theory (up to second order, “2LPT”),
even without introducing the Lagrangian map!

+ For h > 0, the propagator has the operational structure of a
numerical kick-drift-kick scheme, which simplifies the
implementation greatly

, (v) N (&
one time-step = exp 5 exp (€T> exXp )

kick drift kick €= —lha

ct. Baker-Campbell-Hausdorff formula

16
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Density 1+ 6 = |¢|* shortly before shell-crossing:

quasi — 1D, x — profile (y = —%)
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[Uhlemann, CR, Gosenca & Hahn ’18] 17
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Density 1 + 6 = |¢|* for the phased wave problem in 2D

Zel’dovich

. —1.5 —1.0 —0.5 0.0 0.5 1.0 1.5 _
p{™Y) = cos(q1 + cos(g2)) log,o 1+ 6 h = 0.005

Schrodinger solutions: directly obtained by evaluating the propagator on a mesh.

Zel’dovich and 2LPT solutions: require particle realizations from which the

tessellated phase-space sheet can be constructed.
8
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[l]leman, R, osenc & Hahn 1]
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FIG. 5. The wave function 7 (left panel, shown using domain ccloring), as well as the vorticity w = V x (3/[1 + d]) (other
panels) for the phased wave problem. The second and third panels from the left show the vorticity obtained using the free
propagator, filtered with a Gaussian filter in Fourier space on scales of 1/4 and 1/16 the Nyquist wave number to highlight
both the large-scale transversal modes and the topological defects from which they arise. The right-most panel shows the
corresponding vorticity using the Zel'dovich approximation. Time and initial conditions are identical to Fig. 4, but in order to
highlight the role of 7, it has been increased to /i = 0.03. The color scale for vorticity has been adjusted to highlight best the
various features in each panel.
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¢ weak singularities in the multi-stream regime of structure
formation, due to the perfect coldness of CDM

¢ we have significantly closed the gap between theory and numerics
¢ still a lot of work to do beyond 1D

¢ singular features may be regulated by

+ deviating from perfect coldness:
no single-stream, theoretical modelling complicated,
requires full-fledged Vlasov-Poisson

< employing semiclassical (Schrodinger-like) descriptions
still has to be generalized to include full-fledged multi-streaming
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