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Overview
At early times in structure formation, cold dark matter (CDM) is in  
the single-stream regime that comes with a single-valued velocity 

Collisionless nature of CDM leads to crossing of trajectories,  
called shell-crossing (where the density                                  )

focus today: use suitable initial conditions to follow  
analytically trajectories into the multi-stream regime

in the multi-stream regime, particle trajectories exhibit  
weakly singular behaviour (e.g. kinks in the acceleration field)

confirmed by high-resolution N-body simulations

Lastly, a semiclassical approach that is free of singularities 
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δ = (ρ − ρ̄)/ρ̄ → ∞
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Motivation

• closing the gap between theory and numerics

• make numerical simulations more efficient (including fastPM, COLA)

• gather information on counter / UV terms for effective theories

Cornelius Rampf 
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Shell-crossing / 
multi-streaming effects  
are key theoretical  
uncertainties for the 
matter power spectrum 

       [McQuinn & White ’15]

Analytical insight could assist in…

1D
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Sneak Preview: phase-space evolution in 1D

Zel’dovich approximation 

our theoretical prediction 
(no numerics required!!)
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acceleration is locally not differentiable -> weak singularities in Vlasov-Poisson

[CR, Hahn & Frisch, in prep.]

agrees with N-body simulations to very high precision!

shell-crossing is at a=1
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Single-stream regime

First solve for the single-stream regime since initial conditions for the 
multi-stream regime are set at shell-crossing

initial position of fluid particles displacement field

Cornelius Rampf 
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q 7! x(q, a) = q + ⇠(q, a)

perturbative framework: Lagrangian perturbation theory (LPT) 

(= representable by converging Taylor series in LPT)

• 1D collapse
• quasi-1D collapse
• [spherical collapse (top hat)]  
• quasi-spherical collapse (perturbed top hat)

[Novikov ’69, Zel’dovich ’69]

[CR & Frisch ’17]

[CR ’17]

[Peebles ‘67]excluding shell-crossing; see later

Exact analytical solutions in the single-stream regime for

current position of fluid particles

where the displacement is expanded in a Taylor series

central object: the Lagrangian map



'(init)
g = cos q1
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quasi-1D1D
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initial gravitational potential

examples
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LPT solutions at shell-crossing

The second approach, that we denote by Q1D, assumes
quasi-one-dimensional dynamics, following in the footsteps
ofRef. [41], i.e., jϵxj ≫ jϵy;zj. In this case, one takes the exact
solution of the one-dimensional problem along the x axis
given by Zel’dovich approximation as the unperturbed
zeroth-order state: Ψð0Þ

A ðq; tÞ ¼ Ψini
x ðqx; tÞδA;x, A ¼ x, y, z,

with δA;B being the Kronecker delta. Transverse fluctuations
are considered as small first-order perturbations to this setup,
Ψð1Þ

A ðq; tÞ ¼ Ψini
y ðqy; tÞδA;y þ Ψini

z ðqz; tÞδA;z. The perturba-
tive expansion is then performed by keeping terms propor-
tional to ϵiy and ϵjz up to second order, iþ j ¼ 2 (so in this
sense we go one order beyond [41]), while keeping terms
proportional to ϵkx up to tenth order, k ¼ 10.
Vlasov simulations and phase-space structure.—To

quantitatively investigate the dynamics of our system up
to shell crossing, we perform high resolution simulations
with the state-of-the-art Vlasov-Poisson code COLDICE

[42]. This code uses a tessellation, i.e., tetrahedra, to
represent the phase-space sheet. The vertices of the
tessellation form initially a homogeneous mesh of reso-
lution ns (which corresponds to 6n3s simplices) and then
follow Lagrangian equations of motion, Eqs. (1) and (2).
The Poisson equation is solved by fast-Fourier transform on
a regular Cartesian grid of resolution ng, after deposit of the
phase-space sheet on the grid using the method of Franklin
and Kankanhalli generalized to linear order [43–45]. A
number of simulations, as listed in Table I, were performed
assuming Einstein–de Sitter cosmology.
Figure 1 shows representative examples of phase-space

portraits at shell-crossing time. As the ratios ϵy;z=ϵx
increase, the Zel’dovich approximation, which is exact
in the strictly one-dimensional case ϵy;z=ϵx ¼ 0, starts to
deviate significantly from the simulation, as expected. The
Q1D prediction provides a substantial improvement, with
an excellent match of the simulation measurements for
ϵy;z=ϵx ≪ 1 (top panel). Still, it cannot catch up to the shell-
crossing structure when ratios ϵy;z=ϵx approach unity
(middle and bottom panels). However, with a systematic
calculation of all the contributions up to tenth order, the
LPT prediction improves considerably and accurately
reproduces the shell-crossing structure seen in the simu-
lations for most of the parameter space, except in the
vicinity of ðϵy=ϵx; ϵz=ϵxÞ ¼ ð1; 1Þ (bottom panel).

In the ϵy;z=ϵx ¼ 1 case, the phase-space structure is
highly stretched along the velocity axis, which reflects a
noticeable acceleration of the inward mass flow near x ¼ 0,
similarly as in spherical collapse [14,15]. This highly
contrasted dynamical behavior slows down LPT conver-
gence near ϵy;z=ϵx ¼ 1 and even the tenth-order calculation
is insufficient (see also Ref. [46] for a discussion about the
spherically symmetric case).

TABLE I. Parameters of the runs performed with COLDICE.

Designation DþðtiniÞjϵxj ðϵy=ϵx; ϵz=ϵxÞ ns ng

Q1D-S 0.012 (0.167,0.125) 256 512
ASY-Sa 0.012 (0.625,0.5) 512 512
ASY-Sb 0.012 (0.75,0.5) 512 512
ASY-SbHR 0.012 (0.75,0.5) 512 1024
ASY-Sc 0.012 (0.875,0.5) 512 512
SYM-S 0.009 (1,1) 512 512
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FIG. 1. Phase-space structure at collapse time tsc. The inter-
section of the phase-space sheet with y ¼ z ¼ 0 hyperplane is
displayed in ðx; vxÞ subspace for runs Q1D-S, ASY-SbHR, and
SYM-S, from top to bottom. The simulation (black points) is
compared to Zel’dovich approximation (gray dots), Q1D (blue
dot-dashed line), and LPT up to tenth order (red dashed line), as
well as the extrapolated method (cyan curve). In the top panel,
all the curves superpose to each other except for the gray dots.
From top to bottom, shell-crossing time tsc corresponds to
jϵxjDþðtscÞ≈0.912, 0.696, and 0.576, respectively. Note that,
in the middle panel, the lower-resolution simulation, ASY-Sb,
would give undistinguishable results from ASY-SbHR, showing
that using a 5123 grid to solve the Poisson equation is sufficient to
achieve convergence of the numerical experiments.
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[Saga, Taruya & Colombi, PRL 2018]

The second approach, that we denote by Q1D, assumes
quasi-one-dimensional dynamics, following in the footsteps
ofRef. [41], i.e., jϵxj ≫ jϵy;zj. In this case, one takes the exact
solution of the one-dimensional problem along the x axis
given by Zel’dovich approximation as the unperturbed
zeroth-order state: Ψð0Þ

A ðq; tÞ ¼ Ψini
x ðqx; tÞδA;x, A ¼ x, y, z,

with δA;B being the Kronecker delta. Transverse fluctuations
are considered as small first-order perturbations to this setup,
Ψð1Þ

A ðq; tÞ ¼ Ψini
y ðqy; tÞδA;y þ Ψini

z ðqz; tÞδA;z. The perturba-
tive expansion is then performed by keeping terms propor-
tional to ϵiy and ϵjz up to second order, iþ j ¼ 2 (so in this
sense we go one order beyond [41]), while keeping terms
proportional to ϵkx up to tenth order, k ¼ 10.
Vlasov simulations and phase-space structure.—To

quantitatively investigate the dynamics of our system up
to shell crossing, we perform high resolution simulations
with the state-of-the-art Vlasov-Poisson code COLDICE

[42]. This code uses a tessellation, i.e., tetrahedra, to
represent the phase-space sheet. The vertices of the
tessellation form initially a homogeneous mesh of reso-
lution ns (which corresponds to 6n3s simplices) and then
follow Lagrangian equations of motion, Eqs. (1) and (2).
The Poisson equation is solved by fast-Fourier transform on
a regular Cartesian grid of resolution ng, after deposit of the
phase-space sheet on the grid using the method of Franklin
and Kankanhalli generalized to linear order [43–45]. A
number of simulations, as listed in Table I, were performed
assuming Einstein–de Sitter cosmology.
Figure 1 shows representative examples of phase-space

portraits at shell-crossing time. As the ratios ϵy;z=ϵx
increase, the Zel’dovich approximation, which is exact
in the strictly one-dimensional case ϵy;z=ϵx ¼ 0, starts to
deviate significantly from the simulation, as expected. The
Q1D prediction provides a substantial improvement, with
an excellent match of the simulation measurements for
ϵy;z=ϵx ≪ 1 (top panel). Still, it cannot catch up to the shell-
crossing structure when ratios ϵy;z=ϵx approach unity
(middle and bottom panels). However, with a systematic
calculation of all the contributions up to tenth order, the
LPT prediction improves considerably and accurately
reproduces the shell-crossing structure seen in the simu-
lations for most of the parameter space, except in the
vicinity of ðϵy=ϵx; ϵz=ϵxÞ ¼ ð1; 1Þ (bottom panel).

In the ϵy;z=ϵx ¼ 1 case, the phase-space structure is
highly stretched along the velocity axis, which reflects a
noticeable acceleration of the inward mass flow near x ¼ 0,
similarly as in spherical collapse [14,15]. This highly
contrasted dynamical behavior slows down LPT conver-
gence near ϵy;z=ϵx ¼ 1 and even the tenth-order calculation
is insufficient (see also Ref. [46] for a discussion about the
spherically symmetric case).

TABLE I. Parameters of the runs performed with COLDICE.

Designation DþðtiniÞjϵxj ðϵy=ϵx; ϵz=ϵxÞ ns ng

Q1D-S 0.012 (0.167,0.125) 256 512
ASY-Sa 0.012 (0.625,0.5) 512 512
ASY-Sb 0.012 (0.75,0.5) 512 512
ASY-SbHR 0.012 (0.75,0.5) 512 1024
ASY-Sc 0.012 (0.875,0.5) 512 512
SYM-S 0.009 (1,1) 512 512
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FIG. 1. Phase-space structure at collapse time tsc. The inter-
section of the phase-space sheet with y ¼ z ¼ 0 hyperplane is
displayed in ðx; vxÞ subspace for runs Q1D-S, ASY-SbHR, and
SYM-S, from top to bottom. The simulation (black points) is
compared to Zel’dovich approximation (gray dots), Q1D (blue
dot-dashed line), and LPT up to tenth order (red dashed line), as
well as the extrapolated method (cyan curve). In the top panel,
all the curves superpose to each other except for the gray dots.
From top to bottom, shell-crossing time tsc corresponds to
jϵxjDþðtscÞ≈0.912, 0.696, and 0.576, respectively. Note that,
in the middle panel, the lower-resolution simulation, ASY-Sb,
would give undistinguishable results from ASY-SbHR, showing
that using a 5123 grid to solve the Poisson equation is sufficient to
achieve convergence of the numerical experiments.

PHYSICAL REVIEW LETTERS 121, 241302 (2018)

241302-3

Quasi-1D

Triaxial        

Spherical        

“LPT” is Lagrangian perturbation theory 
“Q1D” the adapted PT for quasi-1D

singular velocity at shell-crossing
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Convergence for generic ICs
Except for singularities in the spherical collapse  
(which are removed in the quasi-spherical collapse),  
LPT is converging, probably even until shell-crossing

For cosmological ICs, only  
a lower bound on the radius  
of convergence is known shell-crossing

analytical 
estimate!

⇣ (generating function of displacement)

[CR, Villone & Frisch ‘15]

|�/(1 + �)| ⌘ |J � 1|

[Zheligovsky & Frisch ’14]

[both in preparation]

Cornelius Rampf 
Lab. Lagrange, Nice

Numerical studies of radius  
of convergence are needed 

If shell-crossing cannot be  
reached in a single time-step:  
analytic continuation!
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From single to multi-stream
In Lagrangian coordinates, momentum conservation is (ignoring Hubble)

gravitational force
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-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.6

-0.4

-0.2

0.2

0.4

0.6
x(q, a)

q

before

after

Before shell-crossing, for each q-particle  
there is one final position x. After the 
first shell-crossing up to 3 different  
q’s point to the same position. (Etc.)

Computation of the gravitational force is non-trivial after shell-crossing. 
Besides that momentum conservation is unchanged.

Out[5]=non-trivial mass reshuffling (here 1D):

(

Cornelius Rampf 
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··x(q, a) ∝ − ∇xφg(x(q, a))
(∇2

xφg ∝ δ )
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Multi-stream computation

Until shell-crossing, the gravitational force is given by ZA (in 1D).  
To leading order, this also holds shortly after (due to momentum conservation)  
 

To determine the force, Taruya & Colombi ’17 use a (non-local) Green’s 
function approach; some integrals need to be approximated

To exploit the nonlinear power of LPT, we use the local expression  
 

Analytical solutions for (1) are no simple power laws

�(x(q, a)) =

Z
�(3)D [x(q, a)� x(q0, a)] d3q0 � 1

=

Z nX

k=1

�(3)D [q0 � qn]

| det[rqx(qn, a)]|
d3q0 � 1

Cornelius Rampf 
Lab. Lagrange, Nice

ẍPZA(q, a) / �rx'g(xZA(q, a))

[see also: Pietroni ’18]

(1)
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Results in 1D
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Cornelius Rampf 
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[CR, Frisch & Hahn, in prep.]

particle crosses caustic        (for which             )@qx(q) = 0

force changes sign



�12

Cornelius Rampf 
Lab. Lagrange, NiceRegulating singular behaviour

Singular behaviour can be handled by high-precision methods.  
Alternatively, singular features may be regulated by 

deviating from perfect coldness:        
but then never pure single-stream, theoretical modelling complicated,  
requires in general full-fledged Vlasov-Poisson 

correspondence: Schrödinger      Vlasov for

          acts as a softening scale that regulates singularities

Widrow & Kaiser ’93 introduced Schrödinger-Poisson for LSS

we build on the related but different approach of Short & Coles ’06  
which we motivate in the following from a QFT perspective 

→ ℏ → 0

ℏ > 0

[Uhlemann, CR, Gosenca & Hahn ’18]

employing semiclassical (Schrödinger-like) descriptions: 
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propagator for the Zel’dovich approximation:  
with the ZA action

SZA =
1

2
(x� q) · x� q

a

(

        particle displacement times velocity

( q initial position at a=0
x final position at a

KZA

KZA / exp

⇢
i

~SZA

�

 ZA(x; a) =

Z
d3q KZA(x, q; a) 

(ini)
ZA (q)

i~@aKZA = �~2
2
r2

xKZA , i~@a ZA = �~2
2
r2

x ZA

[Uhlemann, CR, Gosenca & Hahn ’18]

         propagates a wave function from initial to final state

governed by potential-free Schrödinger-type equations
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a-time
-π

π

x-
sp
ac
e

a=aSC

0

Solution for the wave function 
in 1D (           ):

brightness is amplitude              ,  
color the phase of  ZA

[Uhlemann, CR, Gosenca & Hahn ’18]

some built-in multi-streaming, 
appearing as interference pattern

accurate only for 1D ICs 
(doesn’t include tidal interactions)

agrees excellently with classical  
ZA before shell-crossing

no full-fledged multi-streaming
(no interaction potential)

/
p
1 + �

free of singularities for ~ > 0

~ = 0.01
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[Uhlemann, CR, Gosenca & Hahn ’18]

Let’s include an effective potential

and set for the propagator                                        .K / exp

⇢
i

~ [SZA + Sint]

�

Perturbative solutions for         and thus for K can be obtained,  
provided one has a model for

i~@aK = �~2
2
r2

xK + Ve↵K , i~@a = �~2
2
r2

x + Ve↵ ,

Sint

To include tidal interactions, we determine        by using  
standard cosmological perturbation theory

In Uhlemann, CR++ ‘18 we focus on gravitational tidal interactions. 
Full-fledged multi-streaming will be done in a follow-up work.  

Ve↵

Ve↵(up to second order, one can equivalently also solve for        in the Madelung representation    =
p
1 + � exp(�i�/~)

Ve↵

Ve↵
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Lab. Lagrange, NiceResults: Schrödinger

[Uhlemann, CR, Gosenca & Hahn ’18]

In the classical limit            , we recover results from  
Lagrangian perturbation theory (up to second order, “2LPT”),  
even without introducing the Lagrangian map!

~ ! 0

( ((

kick drift kick

one time-step =

~ > 0For           , the propagator has the operational structure of a  
numerical kick-drift-kick scheme, which simplifies the  
implementation greatly 

✏ = �i~a

exp

 
✏V̂

2

!
exp

⇣
✏T̂
⌘
exp

 
✏V̂

2

!

cf. Baker-Campbell-Hausdorff formula
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free
NLO
ZA
2LPT

free/ZA

NLO/2LPT

Cornelius Rampf 
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[Uhlemann, CR, Gosenca & Hahn ’18]

Density                       shortly before shell-crossing:1 + � = | |2

~ = 0.03
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[Uhlemann, CR, Gosenca & Hahn ’18]

Zel0dovich free 2LPT NLO

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
log10 1 + �'(init)

g = cos(q1 + cos(q2))
~ = 0.005

Density                      for the phased wave problem in 2D1 + � = | |2

Schrödinger solutions: directly obtained by evaluating the propagator on a mesh.  

Zel’dovich and 2LPT solutions: require particle realizations from which the 
tessellated phase-space sheet can be constructed.
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Lab. Lagrange, NiceVorticity through shell-crossing

[Uhlemann, CR, Gosenca & Hahn ’18]
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weak singularities in the multi-stream regime of structure 
formation, due to the perfect coldness of CDM

we have significantly closed the gap between theory and numerics

still a lot of work to do beyond 1D 

singular features may be regulated by 
 
 
 
 
 
 
 

Cornelius Rampf 
Lab. Lagrange, NiceConclusions & Outlook

deviating from perfect coldness:        
no single-stream, theoretical modelling complicated,  
requires full-fledged Vlasov-Poisson 

employing semiclassical (Schrödinger-like) descriptions  
still has to be generalized to include full-fledged multi-streaming 


