Weak singularities in large-scale structure: identification and workaround

Berkeley, 22nd January 2019

Cornelius Rampf

Laboratoire Lagrange
Observatoire de la Côte d'Azur, Nice, France
in collaboration with Uriel Frisch and Oliver Hahn;
Cora Uhlemann, Mateja Gosenca and Oliver Hahn

AGRANGE

- At early times in structure formation, cold dark matter (CDM) is in the single-stream regime that comes with a single-valued velocity
- Collisionless nature of CDM leads to crossing of trajectories, called shell-crossing (where the density $\delta=(\rho-\bar{\rho}) / \bar{\rho} \rightarrow \infty)$
- focus today: use suitable initial conditions to follow analytically trajectories into the multi-stream regime
in the multi-stream regime, particle trajectories exhibit weakly singular behaviour (e.g. kinks in the acceleration field)
- confirmed by high-resolution N -body simulations
- Lastly, a semiclassical approach that is free of singularities

Motivation

Shell-crossing / multi-streaming effects are key theoretical uncertainties for the matter power spectrum

Analytical insight could assist in...

- closing the gap between theory and numerics
- make numerical simulations more efficient (including fastPM, COLA)
- gather information on counter / UV terms for effective theories

Sneak Preview: phase-space evolution in 1D

[CR, Hahn \& Frisch, in prep.]

agrees with N -body simulations to very high precision!
acceleration is locally not differentiable -> weak singularities in Vlasov-Poisson

Single-stream regime

- First solve for the single-stream regime since initial conditions for the multi-stream regime are set at shell-crossing
- central object: the Lagrangian map $\boldsymbol{q} \mapsto \boldsymbol{x}(\boldsymbol{q}, a)=\boldsymbol{q}+\boldsymbol{\xi}(\boldsymbol{q}, a)$
 current position of fluid particles
- perturbative framework: Lagrangian perturbation theory (LPT) where the displacement is expanded in a Taylor series
- Exact analytical solutions in the single-stream regime for (= representable by converging Taylor series in LPT)
- 1D collapse
[Novikov '69, Zel'dovich '69]
- quasi-1D collapse
[CR \& Frisch '17]
- [spherical collapse (top hat)]
excluding shell-crossing; see later
[Peebles ‘67]
- quasi-spherical collapse (perturbed top hat)

Cornelius Rampf Lab. Lagrange, Nice

$$
\varphi_{\mathrm{g}}^{(\mathrm{init})}=\cos q_{1}
$$

quasi-1D

examples

$$
\varphi_{\mathrm{g}}^{(\mathrm{init})}=\cos q_{1}+0.1 \sin q_{2}+0.1 \sin q_{3}
$$

quasi-1D

LPT solutions at shell-crossing

[Saga, Taruya \& Colombi, PRL 2018]

singular velocity at shell-crossing

"LPT" is Lagrangian perturbation theory "Q1D" the adapted PT for quasi-1D

Convergence for generic ICs

- Except for singularities in the spherical collapse (which are removed in the quasi-spherical collapse), LPT is converging, probably even until shell-crossing
- For cosmological ICs, only a lower bound on the radius of convergence is known
[Zheligovsky \& Frisch '14]
- Numerical studies of radius of convergence are needed
- If shell-crossing cannot be reached in a single time-step: analytic continuation!
[both in preparation]

$$
|\delta /(1+\delta)| \equiv|J-1|
$$

In Lagrangian coordinates, momentum conservation is (ignoring Hubble)

$$
\ddot{\boldsymbol{x}}(\boldsymbol{q}, a) \propto-\underbrace{\nabla_{x} \varphi_{\mathrm{g}}(\boldsymbol{x}(\boldsymbol{q}, a))}_{\text {gravitational force }}
$$

$$
\left(\nabla_{x}^{2} \varphi_{\mathrm{g}} \propto \delta\right)
$$

Computation of the gravitational force is non-trivial after shell-crossing. Besides that momentum conservation is unchanged.

Multi-stream computation

- Until shell-crossing, the gravitational force is given by ZA (in 1D).

To leading order, this also holds shortly after (due to momentum conservation)

$$
\begin{equation*}
\ddot{\boldsymbol{x}}_{\mathrm{PZA}}(\boldsymbol{q}, a) \propto-\nabla_{x} \varphi_{\mathrm{g}}\left(\boldsymbol{x}_{\mathrm{ZA}}(\boldsymbol{q}, a)\right) \tag{1}
\end{equation*}
$$

- To determine the force, Taruya \& Colombi '17 use a (non-local) Green’s function approach; some integrals need to be approximated
- To exploit the nonlinear power of LPT, we use the local expression

$$
\begin{aligned}
\delta(\boldsymbol{x}(\boldsymbol{q}, a)) & =\int \delta_{\mathrm{D}}^{(3)}\left[\boldsymbol{x}(\boldsymbol{q}, a)-\boldsymbol{x}\left(\boldsymbol{q}^{\prime}, a\right)\right] \mathrm{d}^{3} q^{\prime}-1 \\
& =\int \sum_{k=1}^{n} \frac{\delta_{\mathrm{D}}^{(3)}\left[\boldsymbol{q}^{\prime}-\boldsymbol{q}_{n}\right]}{\left|\operatorname{det}\left[\nabla_{q} \boldsymbol{x}\left(\boldsymbol{q}_{n}, a\right)\right]\right|} \mathrm{d}^{3} q^{\prime}-1
\end{aligned}
$$

- Analytical solutions for (1) are no simple power laws [see also: Pietroni '18]

Cornelius Rampf Lab. Lagrange, Nice [CR, Frisch \& Hahn, in prep.]

Regulating singular behaviour

Singular behaviour can be handled by high-precision methods.
Alternatively, singular features may be regulated by

* deviating from perfect coldness:
but then never pure single-stream, theoretical modelling complicated, requires in general full-fledged Vlasov-Poisson
* employing semiclassical (Schrödinger-like) descriptions:
* correspondence: Schrödinger \rightarrow Vlasov for $\hbar \rightarrow 0$
. $\hbar>0$ acts as a softening scale that regulates singularities
*. Widrow \& Kaiser '93 introduced Schrödinger-Poisson for LSS
* we build on the related but different approach of Short \& Coles '06 which we motivate in the following from a QFT perspective
[Uhlemann, CR, Gosenca \& Hahn '18]
- propagator for the Zel'dovich approximation: $K_{\mathrm{ZA}} \propto \exp \left\{\frac{1}{\hbar} S_{\mathrm{ZA}}\right\}$ with the ZA action

$$
S_{\mathrm{ZA}}=\frac{1}{2}(\underbrace{\boldsymbol{x}-\boldsymbol{q})} \cdot \underbrace{\frac{\boldsymbol{x}-\boldsymbol{q}}{a}}
$$

particle displacement times velocity
\boldsymbol{q} initial position at $a=0$ \boldsymbol{x} final position at a

- $K_{\text {ZA }}$ propagates a wave function from initial to final state

$$
\psi_{\mathrm{ZA}}(\boldsymbol{x} ; a)=\int \mathrm{d}^{3} q K_{\mathrm{ZA}}(\boldsymbol{x}, \boldsymbol{q} ; a) \psi_{\mathrm{ZA}}^{(\mathrm{ini})}(\boldsymbol{q})
$$

- governed by potential-free Schrödinger-type equations

$$
\mathrm{i} \hbar \partial_{a} K_{\mathrm{ZA}}=-\frac{\hbar^{2}}{2} \nabla_{x}^{2} K_{\mathrm{ZA}}, \quad \mathrm{i} \hbar \partial_{a} \psi_{\mathrm{ZA}}=-\frac{\hbar^{2}}{2} \nabla_{x}^{2} \psi_{\mathrm{ZA}}
$$

A semiclassical path to LSS

Cornelius Rampf Lab. Lagrange, Nice

Solution for the wave function in 1D $(\hbar=0.01)$:

brightness is amplitude $\propto \sqrt{1+\delta}$, color the phase of ψ_{ZA}
free of singularities for $\hbar>0$ some built-in multi-streaming, appearing as interference pattern agrees excellently with classical ZA before shell-crossing no full-fledged multi-streaming (no interaction potential) accurate only for 1D ICs (doesn't include tidal interactions)

A semiclassical path to LSS

- Let's include an effective potential $V_{\text {eff }}$

$$
\mathrm{i} \hbar \partial_{a} K=-\frac{\hbar^{2}}{2} \nabla_{x}^{2} K+V_{\mathrm{eff}} K, \quad \mathrm{i} \hbar \partial_{a} \psi=-\frac{\hbar^{2}}{2} \nabla_{x}^{2} \psi+V_{\mathrm{eff}} \psi
$$

and set for the propagator $K \propto \exp \left\{\frac{\mathrm{i}}{\hbar}\left[S_{\mathrm{ZA}}+S_{\mathrm{int}}\right]\right\}$.

- Perturbative solutions for $S_{\text {int }}$ and thus for K can be obtained, provided one has a model for $V_{\text {eff }}$
\downarrow In Uhlemann, CR++ '18 we focus on gravitational tidal interactions. Full-fledged multi-streaming will be done in a follow-up work.
\uparrow To include tidal interactions, we determine $V_{\text {eff }}$ by using standard cosmological perturbation theory (up to second order, one can equivalently also solve for $V_{\text {eff }}$ in the Madelung representation $\psi=\sqrt{1+\delta} \exp (-\mathrm{i} \phi / \hbar)$

Results: Schrödinger

\uparrow In the classical limit $\hbar \rightarrow 0$, we recover results from Lagrangian perturbation theory (up to second order, "2LPT"), even without introducing the Lagrangian map!
\downarrow For $\hbar>0$, the propagator has the operational structure of a numerical kick-drift-kick scheme, which simplifies the implementation greatly

$$
\text { one time-step }=\underbrace{\exp \left(\frac{\epsilon \hat{V}}{2}\right)}_{\text {kick }} \underbrace{\exp (\epsilon \hat{T})}_{\text {drift }} \underbrace{\exp \left(\frac{\epsilon \hat{V}}{2}\right)}_{\text {kick }}
$$

cf. Baker-Campbell-Hausdorff formula

Results beyond 1D

Density $1+\delta=|\psi|^{2}$ shortly before shell-crossing:

Results in 2D

Density $1+\delta=|\psi|^{2}$ for the phased wave problem in 2D

Schrödinger solutions: directly obtained by evaluating the propagator on a mesh.
Zel'dovich and 2LPT solutions: require particle realizations from which the tessellated phase-space sheet can be constructed.

Vorticity through shell-crossing

Cornelius Rampf Lab. Lagrange, Nice

FIG. 5. The wave function ψ (left panel, shown using domain coloring), as well as the vorticity $\boldsymbol{\omega}=\boldsymbol{\nabla} \times(\boldsymbol{j} /[1+\delta])$ (other panels) for the phased wave problem. The second and third panels from the left show the vorticity obtained using the free propagator, filtered with a Gaussian filter in Fourier space on scales of $1 / 4$ and $1 / 16$ the Nyquist wave number to highlight both the large-scale transversal modes and the topological defects from which they arise. The right-most panel shows the corresponding vorticity using the Zel'dovich approximation. Time and initial conditions are identical to Fig. 4, but in order to highlight the role of \hbar, it has been increased to $\hbar=0.03$. The color scale for vorticity has been adjusted to highlight best the various features in each panel.

- weak singularities in the multi-stream regime of structure formation, due to the perfect coldness of CDM
- we have significantly closed the gap between theory and numerics
- still a lot of work to do beyond 1D
- singular features may be regulated by
* deviating from perfect coldness:
no single-stream, theoretical modelling complicated, requires full-fledged Vlasov-Poisson
* employing semiclassical (Schrödinger-like) descriptions still has to be generalized to include full-fledged multi-streaming

