

Who am I

Michel Piat (Professor at APC, Paris Cité University)

- Planck-HFI
 - Deputy Instrument Scientist
 - Very low frequency stability (thermal stability, readout)
 - Calibration on Earth orbital motion dipole
- R&D
 - PI, BSD project (B-mode Superconducting Detectors): TES arrays + readout developments
 - PI, NGKID project (Next Generation Kinetic Inductance Detectors): antenna coupled KIDs for CMB polarization observations.
 - PI, NGCryo project (Next Generation Cryogenic systems): sub-K minifridges
- PI, CRYOMAT platform: characterizations of material at sub-K temperatures
 - Electrical, thermal and mechanical properties
- CMB projects:
 - ESA-CNES space mission proposals (SAMPAN, BPol, COrE, PRISM, COrE+, CORE)
 - PI ESA contract: feasibility study of a polarization millimeter space mission
 - LiteBIRD MHFT: in charge of thermal modeling
 - Instrument Scientist of QUBIC (Q & U Bolometric Interferometer for Cosmology)

M. Piat

QUBIC

Outline

- 1. CMB polarisation
- 2. QUBIC instrument
- 3. Spectral Imaging with QUBIC

You can detect the CMB from your garden

E < 0

B < 0

 $Q, U \Rightarrow E, B$

E > 0

B > 0

CMB polarisation: **E** and **B** modes

Density fluctuations (scalar modes): T anisotropies and E modes

Primordial gravitational waves (tensor

M. Piat QUBIC 6

Challenges to measure B modes

- Challenges:
 - Small signal $\lesssim 45 \text{ nK}$
 - Instrumental systematics $\lesssim 1\%$
 - B-modes \lesssim polarized foregrounds

- Foregrounds have distinct colors:
 - Need many frequencies

M. Piat

Adding interferometry?

- First idea from Peter Timble and Lucio Piccirillo ٠ (1998)
 - Superimpose all horns EM waves on all bolometers
 - Telescope = beam combiner
 - One detector on the focal plane sees all horns
- Motivations: •
 - High sensitivity with incoherent low temperature detectors
 - Systematics control with interferometry
 - Self-calibration and Spectro-Imaging thanks to interferometry

The **QUBIC** instrument

- Cryostat: 1.547m high, 1.42m diameter, ~800kg
- Final Instrument (FI)
 - 20x20 horn array
 - 2 x 1024 TESs @ 320mK (150GHz and 220GHz)
- Technological Demonstrator (TD)
 - Same cryostat and cryogenics as FI
 - 8 x 8 horn array
 - 1/4 focal plane (256 TESs at 150GHz)
- Mid-2018-2021: TD integrated and tested at APC
- 2021-2022: integration and tests in Salta
- Since Nov 2022: instrument on site, commissioning going on
- Upgrade toward FI: 2025

M. Piat

Sensitivity forecast

M. Piat

QUBIC detection chain

- 1 focal plane = 4 wafers of 256 TESs @ 350mK
- Readout: Time Domain Multiplexing 128:1
 - 128 SQUIDs @ 1K
 - 1 ASIC @ 40 K
- Warm readout: FPGA board
- FI: 2 focal planes: 150GHz and 220GHz
- TD: 1 focal planes with 256 TESs (150GHz)

[Piat et al., QUBIC IV, 2022]

M. Piat

QUBIC

14

QUBIC TES prototype

 Open membranes, NbSi sensor (IJCLab, IEF)

• No excess noise

• Fully compliant with QUBIC requirements

[Martino PhD, 2012]

M. Piat

QUBIC TES array

M. Piat

QUBIC cold readout: SQUIDs and ASIC

- SQUIDs: SQ600S from StarCryoelectronics
- ASIC SiGe at 70K:
 - SQUID rows addressing:
 - Through capacitors with AC multiplexed current sources (1:32)
 - Low noise amplifier with multiplexed inputs:
 - en = 0.3nV.Hz^{-0.5}
 - Column multiplexing (1:4)
 - Digital addressing circuit controlled by an external clock

QUBIC warm readout and acq. sys.

- FPGA board and acquisition system at 300K:
 - 2MHz ADC and DACs
 - Digital Flux Locked Loop (FLL) in FPGA
 - $\phi_0/2$ flux modulation implemented
- Software QUBIC Studio:

M. Piat

Detection chain characterizations

- Detection chain overall yield of 77% at 320mK in Salta
- Readout noise currently limited to 100pA.Hz^{-0.5} by aliasing noise from multiplexing
 - Nyquist inductor being implemented

M. Piat

Detection chain characterizations

- Sensitivity limited by microphonics from Pulse Tubes (PT)
 - Excitation of mechanical resonances
 - Heat dissipation
 - Better mechanical decoupling to be implemented for FI
- Sensitivity limited to few 10⁻¹⁶W.Hz^{-0.5}

M. Piat

Synthesized beam

M. Piat

TD: 8x8 horn array and RF switches (4K)

8x8 horn array below the polarizer

Platelet back-to-back horns with RF switch module in the middle

Electromagnet to open or close each RF switch (max 2 at the same time)

M. Piat

Self calibration - Fringes

- Self calibration: [Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]
 - Use horn array redundancy to calibrate systematics
 - Imaging fringes with different baselines is fundamental to performing "Self Calibration"

QUBIC on site near San Antonio de los Cobres, Argentina, at 5000m a.s.l. (inaugurated Nov. 22nd 2022)

M. Piat

3. Spectral imaging

- Secondary beam positions dependance with frequency
- Could be used for spectral imaging!

[Mousset et al., QUBIC II, 2022]

M. Piat

Synthesized Beam Map-Making

- Scanning the sky with QUBIC PSF:
- Classical map making with multiple beams
- Generalized to multifrequency map making

QUBIC PSF (BI Synthesized beam)

[Mousset et al., QUBIC II, 2022] [Chanial, Régnier, et al., in prep]

M. Piat

M. Piat	QUBIC	35

Spectral imaging: a unique BI feature

[Hamilton, Mousset et al. QUBIC I] (JCAP 2022)

Spectral imaging: a unique BI feature

Non-minimal dust model: <u>Dust SED decorrelation</u> (Corr_length = 15:3x smaller than current constraints)

Spectral imaging: a unique BI feature

Non-minimal dust model: <u>Dust SED decorrelation</u> (d6 Corr_length = 15:3x smaller than current constraints)

B.I. is complementary to direct imaging: Dust decorrelation is to be expected from realistic dust

M. Piat

QUBIC

40

M. Piat

Components Map-Making

- Classical imagers: Frequency maps \rightarrow **Component separation**
- B.I.: frequency sensitivity in TOD • \Rightarrow directly build components maps from TOD
 - Full Spectral-Imaging resolution
 - Richer spectral modeling
 - Spectral index variations
 - Emission lines (CO, ...)
 - Atmosphere

Input

First TOD \rightarrow Components MapMaking (parametric)! (dl, noiseless)

Iteration = 1

Output

Output

Residual

Residua

0.0001

-0.0001

Components Map-Making

- Classical imagers: Frequency maps → Component separation
- B.I.: frequency sensitivity in TOD
 ⇒ directly build components maps
 from TOD
 - Full Spectral-Imaging resolution
 - Richer spectral modeling
 - Spectral index variations
 - Emission lines (CO, ...)
 - Atmosphere

[Régnier, et al., in prep]

M. Piat

QUBIC

To conclude

- <u>QUBIC</u>: the 1st Bolometric Interferometer inaugurated in Nov. 2022.
 Commissioning is on its way
 - Sensitivity to primordial CMB B-modes: $\sigma(r)=0.015$ (3 years, conservative)
 - As an Interferometer, QUBIC has several specificities w.r.t. classical imagers:
 - Self Calibration and low cross-polarization
 - Spectral Imaging: a possible new path to foreground mitigation
 - Make images in up to 6 sub-bands within the physical detectors bandwidth
 - Measure "locally" the contamination from astrophysical foregrounds (including decorrelated dust)
 - New direct TOD \rightarrow Components approach (improves component separation)
- Check the <u>JCAP special Issue on QUBIC (2022)</u>: 8 papers covering forecasts, lab calibration and hardware design