DESI shakes up the Dark Universe

Nathalie Palanque-Delabrouille (Berkeley Lab) On behalf of the DESI Collaboration

April 14, 2025 UC Berkeley Department of Physics Colloquia

The expanding universe

U.S. Department of Energy Office of Science

Velocity increases with Distance

Expanding
Universe

Velocity = H x Distance

H ~ 70 km/s/Mpc* (7% per Giga-year) *current estimation

Variation of H? \Rightarrow Study at different epochs (= redshifts)

Nathalie Palanque-Delabrouille (LBNL)

The expanding universe

U.S. Department of Energy Office of Science

2011 Nobel Prize

Perlmutter et al., 1998 Riess et al., 1998 Hubble diagram distance – redshift relation

SN Ia (known luminosity)

Standard model of cosmology

Standard model of cosmology – Λ CDM

U.S. Department of Energy Office of Science

Two main two components of unknown nature

- **Dark Matter** (galaxy formation, gravitational lensing, rotation curves, ...)
- Dark Energy (late-time acceleration)

Other missing information

Neutrino masses

Dark Energy

$$G_{\mu\nu} + \Lambda \, g_{\mu\nu} = \frac{8\pi G}{c^4} \, T_{\mu\nu}$$

U.S. Department of Energy Office of Science

Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO)

U.S. Department of Energy Office of Science

Propagation of baryon-photon over-density sound waves in primordial plasma

At recombination (z~1100): p + $e^- \rightarrow H$

- Plasma evolves from optically thick to optically thin
- Baryons decouple from photons
- Waves stall

Residual spherical shell ---- Peak in clustering of matter

Baryon Acoustic Oscillations (BAO)

U.S. Department of Energy Office of Science

Propagation of baryon-photon over-density sound waves in primordial plasma

At recombination (z~1100): $p + e^{-} \rightarrow H$

- Plasma evolves from optically thick to optically thin
- Baryons decouple from photons
- Waves stall

Residual spherical shell \longrightarrow Peak in clustering of matter

Size of feature = distance sound wave traveled

Preferred 3D scale $r_s \sim 150$ kpc (at recombination) $r_s \sim 150 \text{ Mpc}$ (today)

Baryon Acoustic Oscillations (BAO)

U.S. Department of Energy Office of Science

Imprint of fluctuations in primordial plasma — Standard Ruler to measure distances

The BAO standard ruler

Artist's view of BAO

D_M(z) anf **H(z)** encode expansion history of the Universe

Nathalie Palanque-Delabrouille (LBNL)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 72 Participating Institutions!

DESI

DESI targets: 40 million galaxies & quasars!

The Lyman- α Forest at z>2.1

 $F = e^{-\tau}$

 $\tau \propto n_{HI}$

- Quasars visible to high redshift (z ~ 5)
- Absorption of Quasar spectrum by neutral H in IGM
- Transmitted flux fraction F: proxy for neutral H density

Nathalie Palanque-Delabrouille (LBNL)

DESI instrument

U.S. Department of Energy Office of Science

Mayall telescope at Kitt Peak Observatory (AZ)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Focal plane: 5000 fiber positioners (high multiplexing)

DESI instrument

DESI instrument

U.S. Department of Energy Office of Science

AOM-ION9 AOM-ION9 Optical fibers

7 deg² field of view

4m mirror

(large collecting area)

Nathalie Palanque-Delabrouille (LBNL)

anninganna

DESI instrument

U.S. Department of Energy Office of Science

DESI DR2: data & analysis

DESI Data Release 1 footprint

DESI Data Release 2 footprint

Blinding strategy

U.S. Department of Energy Office of Science

Blinded analysis to prevent confirmation bias

- Catalog-level for Galaxies & quasars: redshifts & weights
- Cosmology-level for Lyman-alpha forest: shift of BAO peak

Procedure

Determine analysis parameters & validate choices based on

- Simulated data (mocks)
- Data splits (*blinded data*)

Robustness tests

- Variations in data vector
- Methods to compute correlations & covariances
- BAO modeling (priors, broadband, ...)
- Imaging systematics
- Data splits

Systematics

U.S. Department of Energy Office of Science

Galaxy clustering

Dominant systematics

- Theoretical modeling
- Galaxy-halo connection
- Fiducial cosmology

Total systematic (tracer-dependent) $\Delta \alpha_{iso} = 0.14\%$ to 0.22% $\Delta \alpha_{AP} = 0.22\%$ to 0.33%

Induced increase of σ_{tot} over σ_{stat}

 $\begin{array}{ll} \Delta\,\sigma(\alpha_{\rm iso}) = 1 - \,9\% & ({\sf BGS-LRG3+ELG1}) \\ \Delta\,\sigma(\alpha_{\rm AP}) = 0.1 - 2\% & ({\sf QSO-LGR3+ELG1}) \end{array}$

DESI DR2 results I: Lya (arXiv:2503.14739) DESI DR2 results II: BAO (arXiv:2503.14738)

$Ly\alpha$ forest clustering

Dominant systematics

• non-linear evolution of BAO peak

Total systematic

 $\Delta \alpha_{\parallel} = 0.3\%$ $\Delta \alpha_{\perp} = 0.3\%$

Induced increase of σ_{tot} over σ_{stat} $\Delta \sigma(\alpha_{iso}) = 9\%$ (Ly α)

Statistics-limited!

DR2 clustering measurements

LRG+ELG (0.8<z<1.1)

 15σ detection of BAO at $z_{eff} = 0.93$

(vs. 0.6% for final SDSS)

ENERGY

DESI DR2 BAO

BAO data: $\Delta \theta$ and $\Delta z \longrightarrow D_M / r_d$ and D_H / r_d

U.S. Department of Energy Office of Science

$$D_V = \left(zD_M(z)^2 D_H(z)\right)^{1/3} \longleftarrow$$

 $\Omega_{\rm M}$ and ${\rm H_0r_d}$

Agreement & complementarity between tracers

ACDM: DESI DR2 vs. CMB

U.S. Department of Energy Office of Science

DESI DR2 BAO is:

- Consistent with DESI DR1
- 2.3 σ from the CMB (was 1.9 σ with DESI DR1)

CMB:

- primary CMB from Planck PR4 (CamSpec)
- CMB lensing from Planck PR4 + ACT DR6

ACDM: DESI DR2 vs. Supernovae

- **DESI DR2** consistent with DESI DR1
- **DESI DR2** is lower than the CMB
- **DESI DR2** is lower than Supernovae:
 - 1.7 σ lower than Pantheon+
 - \circ 2.1 σ lower than Union3
 - \circ 2.9 σ lower than DESY5

Data consistency

U.S. Department of Energy Office of Science

Differences in $H_0 \& \Omega_m$ between DESI BAO, CMB and SN

expected

when dynamic dark energy universe fitted assuming ΛCDM

U.S. Department of Energy Office of Science

Expansion rate of the Universe H_0

Riess & Breuval 2023

DESI DR2 results II: BAO (arXiv:2503.14738)

U.S. Department of Energy Office of Science

Dark Energy

Dark Energy

U.S. Department of Energy Office of Science

Equation of state
$$\ P=w
ho$$

Dynamic dark energy

(Chevalier & Polarski 2001, Linder 2003)

$$w(z)=w_0+w_a\;rac{z}{1+z}$$

Cosmological constant Λ

$$w_0 = -1$$
 and $w_a = 0$

Evolving Dark Energy

$$w(a) = w_0 + (1-a)w_a$$

- Degeneracy in $w_0 w_a$ plane with BAO alone
- DESI DR2 within 2σ of Λ CDM

Evolving Dark Energy

U.S. Department of Energy Office of Science

$$w(a) = w_0 + (1-a)w_a$$

• 3.1 σ preference for evolving dark energy with DESI DR2 + CMB

$$w_0 = -0.42 \pm 0.21$$

 $w_a = -1.75 \pm 0.58$ **DESI + CMB**

Evolving Dark Energy

U.S. Department of Energy Office of Science

$$w(a) = w_0 + (1-a)w_a$$

DESI + CMB + Pantheon+: 2.8σ DESI + CMB + Union3: 3.8σ DESI + CMB + DES-SN5Yr: 4.2σ

Result robustness

U.S. Department of Energy Office of Science

CMB alternatives limited to early-time information

- Early-Universe priors on $(\theta_*, \omega_b, \omega_{bc})$ derived from CMB: DESI + $(\theta_*, \omega_b, \omega_{bc})_{CMB} \Rightarrow 2.4\sigma$
- CMB without lensing: **DESI + CMB (no lensing)** \Rightarrow 2.7 σ

Weaker preference $(3.1\sigma \text{ for DESI} + \text{CMB})$ but similar posteriors

Result robustness

U.S. Department of Energy Office of Science

Constraint limited to low-redshift probes

• Replacing CMB with DESY3 3 × 2pt (weak lensing + galaxy clustering) DESI + DESY3 (3 × 2pt) \Rightarrow 2.2 σ DESI + DESY3 (3 × 2pt) + DESY5 \Rightarrow 3.3 σ

Preference for same region

DESI DR2 results II: BAO (arXiv:2503.14738)

The nature of the evidence

- **ACDM** model can fit DESI BAO
- DESI at z < 1 prefer distances 1-2% lower than CMB prediction

DESI DR2 results II: BAO (arXiv:2503.14738)

The nature of the evidence

Isotropic BAO α_{iso}

Isotropic BAO distance measurement

- **ACDM** model can fit DESI BAO
- DESI at z < 1 prefer distances 1-2% lower than CMB prediction

- **ACDM** model can fit SNe
- Tension with DESI and CMB

No good **ACDM** fit to DESI BAO, CMB & SN simultaneously

The nature of the evidence

1.04

0.10

0.05

0.00

-0.05

¢.

 $-\mu^{\rm fid}$

μ

Isotropic BAO α_{iso}

D DESI

Isotropic BAO distance measurement $O_{(2)}^{\mathbb{P}} O_{(3)}^{\mathbb{P}} O_{(3)}^{\mathbb{P}}$

Not have enough freedom in **wCDM** to fit BAO, CMB and SN simultaneously either

Supernovae distance modulus

Τ

Þ

Ę

. . . .

Ь

The nature of the evidence

Isotropic BAO distance measurement

Supernovae distance modulus

 $w_0 w_a CDM$ fit to BAO+SN also a good fit to CMB

U.S. Department of Energy Office of Science

Dark Energy model

Observations = distance(z), not w(z)!

Dark energy model

DESI DR2 results II: BAO (*arXiv:2503.14738*) DESI supporting paper Lodha+ (*arXiv:2503.14743*)

U.S. Department of Energy Office of Science

w < -1 at high z : increasing dark energy density with time !

Could indicate more complex dark sector

Maximum dark energy density reached at $z \sim 0.45$ (phantom crossing)

Dark energy model

DESI DR2 results II: BAO (*arXiv:2503.14738*) DESI supporting paper Lodha+ (*arXiv:2503.14743*)

U.S. Department of Energy Office of Science

Three classes of dark energy

- Thawing (away from w = -1)
- Emergent (from $\rho = 0$, never crosses w = -1)
- Mirage (<w> = -1)

Improvement over LCDM DESI BAO + CMB + SN (DESY5)

Dark Energy Model	$\Delta\chi^2$
Thawing	-12.0
Emergent	-3.9
Mirage	-21.3
W ₀ W _a	-21.4

Dark energy model

DESI DR2 results II: BAO (*arXiv*:2503.14738) DESI supporting paper Lodha+ (*arXiv*:2503.14743)

U.S. Department of Energy Office of Science

Binned reconstruction of w(z)

- Consistent with $w_0 w_a CDM$
- Weaker than Λ CDM at small z (>3 σ)
- Preference for "phantom" at large z

U.S. Department of Energy Office of Science

Neutrino masses

Upper bounds on neutrino masses

U.S. Department of Energy Office of Science

In Λ CDM, Σm_v changes angular diameter distance to last scattering, degenerate with Ω_m , $H_0 \dots$ BAO breaks degeneracy

 $\sum m_{\nu} < 0.064 \text{ eV}$ (95%, DESI (BAO)+CMB)

Tightest constraint to-date (in Λ CDM)

In w₀w_aCDM, relaxed to $\sum m_{\nu} < 0.163 \text{ eV} \qquad \text{(95\%, DESI (BAO)+CMB)}$

DESI supporting paper Elbers+ (arXiv:2503.14744)

