Baryon Acoustic Oscillations with Galaxy Surveys

Present State and Some Future Prospects

Nikhil Padmanabhan

Berkeley Cosmology Seminar Oct 17, 2023

w/ The DESI collaboration Xinyi Chen Farnik Nikakhtar

My Plan

- What can we expect from the upcoming BAO measurements?
 - Early results from DESI
 - A flavor of the Y1 BAO analyses
- What new directions might we extend reconstruction in?
 - Some recent results from optimal transport
 - Reconstruction with neural networks
 - Using reconstruction to build templates to constrain primordial non-Gaussianity

A Standard Ruler : Baryon Acoustic Oscillations

Figures from lbl.gov, Elisa Ferreira et al BOSS CMASS measurements

The expansion history : BAO and SNe

Alam et al, 2021

A different version of the H0 tension

Use the BAO + local measurements to measure the sound horizon

My Plan

• What can we expect from the upcoming BAO measurements?

- Early results from DESI
- A flavor of the Y1 BAO analyses
- What new directions might we extend reconstruction in?
 - Some recent results from optimal transport
 - Reconstruction with neural networks
 - Using reconstruction to build templates to constrain primordial non-Gaussianity

Focal Plane Assembly with Calibration Lamp 5000 Fiber Positioners System Six-lens, 8 sq. deg, Top Ring, Vanes, Wide-Field Corrector and Cage on a Hexapod Ten Thermally-Controlled, Ten, 50-m long 3-Channel Spectrographs **Fiber Cables** 360-980 nm Fiber View Camera

DESI Overview Paper, DESI collab.

DESI : The Stage IV Spectro DE

z

The DESI Collaboration; 1611.00036

The first two months of DESI data, unblinded

Target	N _{North}	N _{South}	N _{Total}	z range	Area [deg ²]	Completeness
BGS Bright	239492	390988	630480	0.1 - 0.5	3677	0.500
BGS Bright, $M_r < -21.5$	38472	71051	109523	0.1 - 0.5	3677	0.500
LRG	80651	180640	261291	0.4 -1.1	1651	0.579
ELG	55383	117145	172528	0.8 - 1.6	976	0.297
QSO	70337	153453	223790	0.8 - 3.5	2906	0.778

Moon et al, DESI collab.,2304.08427

Correlation functions in the first two months of DESI

A 1.7% distance measurement in the LRG sample

Moon et al, DESI collab.,2304.08427

A 2.6% distance measurement in the BGS sample

Moon et al, DESI collab.,2304.08427

My Plan

- What can we expect from the upcoming BAO measurements?
 - Early results from DESI
 - A flavor of the Y1 BAO analyses
- What new directions might we extend reconstruction in?
 - Some recent results from optimal transport
 - Reconstruction with neural networks
 - Using reconstruction to build templates to constrain primordial non-Gaussianity

Y1 DESI Correlation functions

Ashley Ross, DESI KP3, and DESI collab

Building a Y1 Hubble diagram

Ashley Ross, DESI KP3, and DESI collab

Preparing for the DESI Y1 analyses

- BAO theoretical systematics (Stephen Chen, Cullan Howlett)
- Optimizing reconstruction (Xinyi Chen, Zhejie Ding, Enrique Paillas)
- Testing robustness to HOD models (Juan Mena, *Cristhian Garcia-Quintero*)
- Fiducial cosmology assumptions (Alejandro Perez-Fernandez, Rossana Ruggeri, Leonel Medina Varela)
- Observational systematics (Alberto Rosado Marin, *Jiaxi Yu*, Mathilde Pinon, ...)
- Covariances (Otavio Alves, Daniel Forero-Sanchez, Misha Rashkovetskyi)
- Overlapping tracers (David Valcin)

Exploring the ELG HOD space

Exploring the LRG HOD space

J. Mena, C. Garcia-Quintero, et al, in prep

My Plan

- What can we expect from the upcoming BAO measurements?
 - Early results from DESI
 - A flavor of the Y1 BAO analyses
- What new directions might we extend reconstruction in?
 - Some recent results from optimal transport
 - Reconstruction with neural networks
 - Using reconstruction to build templates to constrain primordial non-Gaussianity

Many ideas here :

- Schmittfull et al 2015, Feng et al, 2019, Ota et al, 2021, Liu et al, 2021, Bayer et al, 2023

Reconstructing the BAO feature

Eisenstein et al, 2006 NP et al, 2012

$$abla \cdot \Psi = -\delta$$

Back to simple flows : Optimal Transport

Optimal Transport Reconstruction of Biased Tracers in Redshift Space

Farnik Nikakhtar, $^{1,\,*}$ Nikhil Padmanabhan, $^{1,\,2}$ Roya Mohayaee, $^{3,\,4}$ Bruno Lévy, 5 and Ravi K. Sheth $^{6,\,7}$

w/ Farnik Nikakhtar, Ravi Sheth Roya Moyahee Bruno Levy

Old ideas meet new data (Zeldovich, Peebles, Weinberg+Croft, ...)

The Optimal Transport Problem

Ideas trace back to Monge, Kantorovich

How to translate one distribution into another, minimizing a cost

Ideas now becoming very popular in machine learning, biology etc.

$$egin{aligned} &
ho(\mathbf{x})d^3x =
ho(\mathbf{q})d^3q = d^3q \ &\mathbf{q} = \mathbf{x} +
abla \phi \ &\mathrm{det}(1 + \partial_{xy}\phi) =
ho(\mathbf{x}) \end{aligned}$$

Equivalent to OT with quadratic cost

The Assignment Problem

Partition space into Laguerre cells

Reconstructing protohalo shapes

Nikakhtar et al, 2021

BAO in the protohalos

 $\delta_{\mathrm{ph}}(ec{k}) = \left(b_{10} + b_{01}R_v^2k^2\right)\delta_{\mathrm{m}}(ec{k}) ilde{W}(ec{k}R_f)$

This simple model works well and produces an unbiased BAO scale

S. Gaines, et al, in prep

T

Filling in the dust

$$pb_h + (1-p)b_d = 1$$

$$w_{h} = \frac{(b_{d}/b_{h}) n_{h} b_{h}^{2} P_{mm}(k)}{1 + \sum_{h} n_{h} b_{h}^{2} P_{mm}(k)}$$

F. Nikakhtar, NP, et al, 2023

Filling in the dust

40

300

F. Nikakhtar, NP, et al, 2023

 $r_{\parallel} \; [h^{-1} \mathrm{Mpc}]$

... and in redshift space

F. Nikakhtar, NP, et al, 2023

... and in redshift space

Robustness to assumptions

Incorrect masses

F. Nikakhtar, NP, et al, 2023

Reconstructing the matter field from displacements

F. Nikakhtar, NP, et al, in prep

Boosting the protohalo clustering

Protohalo bias ~ (b-1), which suppresses clustering and S/N Restore large scale power with the displacements (a la SS terms in standard reconstruction)

F. Nikakhtar, NP, et al, in prep

Revisiting "Zeldovich"

Can we build fast "straight line" simulations?

- the OT displacement is curl-free
- explore the connection between the Zeldovich

potential and the OT potential

F. Nikakhtar, NP, et al, in prep

My Plan

- What can we expect from the upcoming BAO measurements?
 - Early results from DESI
 - A flavor of the Y1 BAO analyses
- What new directions might we extend reconstruction in?
 - Some recent results from optimal transport
 - Reconstruction with neural networks
 - Using reconstruction to build templates to constrain primordial non-Gaussianity

Going beyond a simple flow : CNNs

1.00.80.6 r(k)0.40.2 $0.0 \ 10^{-2}$ 10^{-1} Hard to access large scales $k \; [h/Mpc]$ Mao et al, 2021 Use known behavior when possible

Shallue & Eisenstein, 2022 Chen et al, 2023

w/ Xinyi Chen

Using local information to enhance reconstruction

Training with reconstructed density field significantly improves performance

- The initial reconstruction provides a good approximation on large scales.
- CNN then reconstructs further on smaller scales.

Chen, et al, 2023

CNN improves cross-correlation

 CNN+Algorithm performs significantly better than algorithms alone and CNN+Late-time density field
 CNN+ES3 and CNN+HE18 are similar

Two reconstruction algorithms:
Eisenstein et al. 2007, ES3, i.e., standard
Hada & Eisenstein 2018, HE18

Challenges : Shot Noise

My Plan

- What can we expect from the upcoming BAO measurements?
 - Early results from DESI
 - A flavor of the Y1 BAO analyses
- What new directions might we extend reconstruction in?
 - Some recent results from optimal transport
 - Reconstruction with neural networks
 - Using reconstruction to build templates to constrain primordial non-Gaussianity

Model trained with no PNG works for PNG

Templates for fitting f_{NL}

$$\begin{split} &\bullet \delta_G = \text{No PNG IC} \\ &\bullet \delta_{f_{\text{NL}}} = \phi_G^2(k) M_\phi(k) \\ &\bullet \delta^2, \delta_{\nabla^2}, \delta_{S^2} \text{ all computed using } \delta_G \end{split}$$

Templates for fitting f_{NL}

Gaussian Growth Shift Tidal
$$\delta_{\text{CNN}} = b_G \delta_G + f_{\text{NL}} \delta_{f_{\text{NL}}} + b_2 \delta^2 + b_{\nabla^2} \delta_{\nabla^2} + b_{S^2} \delta_{S^2} + \dots$$

fnl value	Gaussian	fnl	growth	Shift	tidal
0	~1	-15+/-5	0.006	-0.014	0.014
+100	~1	77+/-5	0.005	-0.015	0.014
-100	~1	-107+/-5	0.007	-0.014	0.013

Perturbative values : growth = 17/21, shift = -1, tidal = 4/21

Reconstruction significantly reduces all the nonlinearities, while (mostly) preserving non-gaussianity

Constructing a template for the fnl contribution

Cosine filter: between k in 0.2-0.25 h/Mpc

Constructing a bispectrum estimator

- Does not fully recover the initial conditions, but consistent with template fits
- Can construct analogous estimators for other fields to constrain nuisance/nonlinear parameters
- In progress...

with cosine filter between k=0.2-0.25 h/Mpc

My Plan - reprised

- What can we expect from the upcoming BAO measurements?
 - Early results from DESI
 - A flavor of the Y1 BAO analyses
- What new directions might we extend reconstruction in?
 - Some recent results from optimal transport
 - Reconstruction with neural networks
 - Using reconstruction to build templates to constrain primordial non-Gaussianity

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!