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in O18b. Similarly, cosmological constraints from the joint
analysis of wδgκCMBðθÞ and wδgδgðθÞ were presented in O18a.
Here, we focus on Ωm and S8 as these parameters are

tightly constrained in 3 × 2 pt analysis, although con-
straints on several other parameters of interest are provided
in Appendix D. From the joint analysis of wδgκCMBðθÞ and
wγtκCMBðθÞ, we obtain the constraints

Ωm ¼ 0.250þ0.040
−0.043 ;

σ8 ¼ 0.792þ0.051
−0.096 ;

S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
¼ 0.694þ0.080

−0.059 :

These constraints are shown as the orange contours in
Fig. 2. Also overlaid in gray are the constraints from the
3 × 2 pt analysis. While the signal-to-noise of wδgκCMBðθÞ þ
wγtκCMBðθÞ is lower than that of 3 × 2 pt, we observe that the
degeneracy direction is complementary. This suggests that
once the constraining power of wδgκCMBðθÞ þ wγtκCMBðθÞ
becomes more competitive, combining wδgκCMBðθÞ þ
wγtκCMBðθÞ with 3 × 2 pt could shrink the contours more
efficiently due to degeneracy breaking.

B. Consistency between wδgκCMBðθÞ+wγtκCMBðθÞ
and 3 × 2 pt

The contours corresponding to wδgκCMBðθÞ þ wγtκCMBðθÞ
(blue) and 3 × 2 pt (gray) shown in Fig. 2 appear to be in
good agreement. However, since projections of the high-

dimensional posterior (in this case 26 dimensional) into two
dimensions can potentially hide tensions between the two
constraints, we numerically assess tension between the two
constraints using the two approaches described in Sec. V.
When evaluating consistency between wδgκCMBðθÞ þ

wγtκCMBðθÞ and 3 × 2 pt using the evidence ratio defined
in Eq. (19), we find log10 R ¼ 2.3. On the Jeffreys scale,
this indicates “decisive” preference for the consistency
model. This preference can be interpreted as evidence for
consistency between the two datasets in the context
of ΛCDM.
To use the PPD to assess consistency, we set D2 equal to

the combination of wδgκCMBðθÞ and wγtκCMBðθÞ, and set D1

equal to the 3 × 2 pt data vector. Using the methods
described in Sec. V B, we calculate p ¼ 0.48 for this test,
indicating that distribution of the test statistic TðD;ϑÞ
inferred from the measurements of wδgκCMBðθÞ and
wγtκCMBðθÞ is statistically likely given the posterior on
model parameters from the analysis of the 3 × 2 pt data
vector. In other words, there is no evidence for incon-
sistency between wδgκCMBðθÞ þ wγtκCMBðθÞ and the 3 × 2 pt
measurements. The distribution of TðD2; ϑÞ and TðDsim

2 ; ϑÞ
is shown in Fig. 5 in the Appendix C. Consequently, both
the evidence ratio metric and PPD metric indicate that there
is no evidence for inconsistency between wδgκCMBðθÞ þ
wγtκCMBðθÞ and the 3 × 2 pt measurements in the context
of flat ΛCDM.

C. 5 × 2 pt constraints

Since we find that the 3 × 2 pt and wδgκCMBðθÞ þ
wγtκCMBðθÞ measurements are not in tension using both
the evidence ratio and PPD approaches, we now perform a
joint analysis of the 3 × 2 pt, wδgκCMBðθÞ, and wγtκCMBðθÞ
data vectors, i.e., the 5 × 2 pt combination. Note that this
analysis includes covariance between 3 × 2 pt and the
ðwδgκCMBðθÞ; wγtκCMBðθÞÞ observables.
The cosmological constraints from this joint analysis are

shown as gold contours in Fig. 2 (constraints on more
parameters can be found in Sec. VII D). The cosmological
constraints resulting from the 5 × 2 pt analysis are

Ωm ¼ 0.260þ0.029
−0.019 ;

σ8 ¼ 0.821þ0.058
−0.045 ;

S8 ¼ 0.782þ0.019
−0.025 :

The improvement in constraints when moving from the
3 × 2 pt to 5 × 2 pt analysis is small when considering the
marginalized constraints on parameters. In Fig. 2, some
tightening of the constraints can be seen at highΩm and low
σ8. Some additional improvements can be seen in
Appendix D. We note that the parameters ns, Ωb, h0,
Ωνh2 are all prior dominated in both the 3 × 2 pt and
5 × 2 pt analyses.
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FIG. 2. Marginalized constraints on Ωm and S8 ≡
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
for different combinations of correlation functions

in the context of ΛCDM þ ν cosmology: 3 × 2 pt (gold),
wγtκCMBðθÞ þ wδgκCMBðθÞ (open orange), and 5 × 2 pt (gray). We
note that the wγtκCMBðθÞ þ wδgκCMBðθÞ constraints have a different
degeneracy direction compared to those of 3 × 2 pt.
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correlations with κCMB does not add significant con-
straining power beyond that of the 3 × 2 pt data vector.

E. Consistency with Planck measurements
of the CMB lensing autospectrum

While the 5 × 2 pt data vector includes cross-correlations
of galaxies and galaxy shears with CMB lensing, it does not
include the CMB lensing autospectrum. Both the 5 × 2 pt
data vector and CMB lensing autospectrum are sensitive to
the same physics, although theCMB lensing autospectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ∼ 2. Consistency between these two
datasets is therefore a powerful test of the data and the
assumptions of the cosmological model.
Measurements of the CMB lensing autospectrum over

the 2500 deg2 patch covered by the SPT-SZ survey have
been obtained from a combination of SPT and Planck data
by [25], and this power spectrum has been used to generate
cosmological constraints by [73]. Because of lower noise
and higher resolution of the SPT maps relative to Planck,
the cosmological constraints obtained in [73] are compa-
rable to those of the full sky measurements of the CMB
lensing autospectrum presented in [21], despite the large
difference in sky coverage.
In this analysis, we choose to test for consistency between

the 5 × 2 pt data vector and thePlanck-onlymeasurement of
the CMB lensing autospectrum. The primary motivation for
this choice is that it significantly simplifies the analysis
because it allows us to ignore covariance between the 5 ×
2 pt data vector and the CMB lensing autospectrum. This
simplification comes at no reduction in cosmological con-
straining power. Furthermore, the SPTþ Planck and
Planck-only measurements of the CMB lensing autospec-
trum are consistent [73].
Ignoring the covariance between the 5 × 2 pt data vector

and the Planck CMB lensing autospectrum measurements
is justified for several reasons. First, the CMB lensing
autospectrum is most sensitive to large scale structure at
z ∼ 2, at significantly higher redshifts than that probed by
the 5 × 2 pt data vector. Second, the instrumental noise in
the SPT CMB temperature map is uncorrelated with noise
in the Planck CMB lensing maps. Finally, and most
significantly, the measurements of the 5 × 2 pt data vector
presented here are derived from roughly 1300 deg2 of the
sky, while the Planck lensing autospectrum measurements
are full-sky. Consequently, a large fraction of the signal and
noise in the Planck full-sky lensing measurements is
uncorrelated with that of the 5 × 2 pt data vector. We
therefore treat the Planck CMB lensing measurements as
independent of the 5 × 2 pt measurements in this analysis.
The cosmological constraints from Planck lensing auto-

spectrum measurements alone are shown as the gray
contours in Fig. 4. The constraints from the 5 × 2 pt
analysis and those of the Planck lensing autospectrum
overlap in this two dimensional projection of the

multidimensional posteriors. We find an evidence ratio
of log10R ¼ 4.1 when evaluating consistency between the
5 × 2 pt data vector and the Planck lensing autospectrum
measurements, indicating “decisive” preference on the
Jeffreys scale for the consistency model.
When using the PPD to assess consistency, we set D2

equal to wκCMBκCMBðθÞ and set D1 equal to the 5 × 2 pt data
vector. The p-value computed from the PPD is determined
to be p ¼ 0.09, therefore no significant evidence for
inconsistency between the 5 × 2 pt and wκCMBκCMB measure-
ments in the context of ΛCDM. The distributions of the test
statistic for the data and realizations are shown in Fig. 6 in
the Appendix C.

F. Combined constraints from 5 × 2 pt
and the Planck lensing autospectrum

Having found that the cosmological constraints from the
5 × 2 pt and Planck lensing analyses are statistically
consistent, we perform a joint analysis of both datasets,
i.e., of the 6 × 2 pt data vector. The constraints resulting
from the analysis of this joint data vector are shown as the
solid red contour in Fig. 4 (constraints on more parameters
can be found in Sec. VII D).
As seen in Fig. 4, the DESþ SPTþ Planck 5 × 2 pt

analysis yields cosmological constraints that are comple-
mentary to the autospectrum of Planck CMB lensing, as
evidenced by the nearly orthogonal degeneracy directions
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FIG. 4. Marginalized constraints on Ωm and S8 ≡
σ8
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for different combinations of correlation functions

in the context of ΛCDM þ ν cosmology: 5 × 2 pt (gray),
κCMBκCMB (open red), and 6 × 2 pt (red). The wκCMBκCMB contours
are derived from the Planck 2015 lensing data [21]. The 5 × 2 pt
contours are identical to those in Fig. 2. The κCMBκCMB
constraints are complementary to those of the 5 × 2 pt analysis.
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in O18b. Similarly, cosmological constraints from the joint
analysis of wδgκCMBðθÞ and wδgδgðθÞ were presented in O18a.
Here, we focus on Ωm and S8 as these parameters are

tightly constrained in 3 × 2 pt analysis, although con-
straints on several other parameters of interest are provided
in Appendix D. From the joint analysis of wδgκCMBðθÞ and
wγtκCMBðθÞ, we obtain the constraints

Ωm ¼ 0.250þ0.040
−0.043 ;

σ8 ¼ 0.792þ0.051
−0.096 ;

S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
¼ 0.694þ0.080

−0.059 :

These constraints are shown as the orange contours in
Fig. 2. Also overlaid in gray are the constraints from the
3 × 2 pt analysis. While the signal-to-noise of wδgκCMBðθÞ þ
wγtκCMBðθÞ is lower than that of 3 × 2 pt, we observe that the
degeneracy direction is complementary. This suggests that
once the constraining power of wδgκCMBðθÞ þ wγtκCMBðθÞ
becomes more competitive, combining wδgκCMBðθÞ þ
wγtκCMBðθÞ with 3 × 2 pt could shrink the contours more
efficiently due to degeneracy breaking.

B. Consistency between wδgκCMBðθÞ+wγtκCMBðθÞ
and 3 × 2 pt

The contours corresponding to wδgκCMBðθÞ þ wγtκCMBðθÞ
(blue) and 3 × 2 pt (gray) shown in Fig. 2 appear to be in
good agreement. However, since projections of the high-

dimensional posterior (in this case 26 dimensional) into two
dimensions can potentially hide tensions between the two
constraints, we numerically assess tension between the two
constraints using the two approaches described in Sec. V.
When evaluating consistency between wδgκCMBðθÞ þ

wγtκCMBðθÞ and 3 × 2 pt using the evidence ratio defined
in Eq. (19), we find log10 R ¼ 2.3. On the Jeffreys scale,
this indicates “decisive” preference for the consistency
model. This preference can be interpreted as evidence for
consistency between the two datasets in the context
of ΛCDM.
To use the PPD to assess consistency, we set D2 equal to

the combination of wδgκCMBðθÞ and wγtκCMBðθÞ, and set D1

equal to the 3 × 2 pt data vector. Using the methods
described in Sec. V B, we calculate p ¼ 0.48 for this test,
indicating that distribution of the test statistic TðD;ϑÞ
inferred from the measurements of wδgκCMBðθÞ and
wγtκCMBðθÞ is statistically likely given the posterior on
model parameters from the analysis of the 3 × 2 pt data
vector. In other words, there is no evidence for incon-
sistency between wδgκCMBðθÞ þ wγtκCMBðθÞ and the 3 × 2 pt
measurements. The distribution of TðD2; ϑÞ and TðDsim

2 ; ϑÞ
is shown in Fig. 5 in the Appendix C. Consequently, both
the evidence ratio metric and PPD metric indicate that there
is no evidence for inconsistency between wδgκCMBðθÞ þ
wγtκCMBðθÞ and the 3 × 2 pt measurements in the context
of flat ΛCDM.

C. 5 × 2 pt constraints

Since we find that the 3 × 2 pt and wδgκCMBðθÞ þ
wγtκCMBðθÞ measurements are not in tension using both
the evidence ratio and PPD approaches, we now perform a
joint analysis of the 3 × 2 pt, wδgκCMBðθÞ, and wγtκCMBðθÞ
data vectors, i.e., the 5 × 2 pt combination. Note that this
analysis includes covariance between 3 × 2 pt and the
ðwδgκCMBðθÞ; wγtκCMBðθÞÞ observables.
The cosmological constraints from this joint analysis are

shown as gold contours in Fig. 2 (constraints on more
parameters can be found in Sec. VII D). The cosmological
constraints resulting from the 5 × 2 pt analysis are

Ωm ¼ 0.260þ0.029
−0.019 ;

σ8 ¼ 0.821þ0.058
−0.045 ;

S8 ¼ 0.782þ0.019
−0.025 :

The improvement in constraints when moving from the
3 × 2 pt to 5 × 2 pt analysis is small when considering the
marginalized constraints on parameters. In Fig. 2, some
tightening of the constraints can be seen at highΩm and low
σ8. Some additional improvements can be seen in
Appendix D. We note that the parameters ns, Ωb, h0,
Ωνh2 are all prior dominated in both the 3 × 2 pt and
5 × 2 pt analyses.

0.16 0.20 0.24 0.28 0.32 0.36

m

0.48

0.56

0.64

0.72

0.8

0.88

0.96

S 8
8

m
0.

3

g CMB + t CMB

3 2pt
5 2pt

FIG. 2. Marginalized constraints on Ωm and S8 ≡
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
for different combinations of correlation functions

in the context of ΛCDM þ ν cosmology: 3 × 2 pt (gold),
wγtκCMBðθÞ þ wδgκCMBðθÞ (open orange), and 5 × 2 pt (gray). We
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degeneracy direction compared to those of 3 × 2 pt.
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correlations with κCMB does not add significant con-
straining power beyond that of the 3 × 2 pt data vector.

E. Consistency with Planck measurements
of the CMB lensing autospectrum

While the 5 × 2 pt data vector includes cross-correlations
of galaxies and galaxy shears with CMB lensing, it does not
include the CMB lensing autospectrum. Both the 5 × 2 pt
data vector and CMB lensing autospectrum are sensitive to
the same physics, although theCMB lensing autospectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ∼ 2. Consistency between these two
datasets is therefore a powerful test of the data and the
assumptions of the cosmological model.
Measurements of the CMB lensing autospectrum over

the 2500 deg2 patch covered by the SPT-SZ survey have
been obtained from a combination of SPT and Planck data
by [25], and this power spectrum has been used to generate
cosmological constraints by [73]. Because of lower noise
and higher resolution of the SPT maps relative to Planck,
the cosmological constraints obtained in [73] are compa-
rable to those of the full sky measurements of the CMB
lensing autospectrum presented in [21], despite the large
difference in sky coverage.
In this analysis, we choose to test for consistency between

the 5 × 2 pt data vector and thePlanck-onlymeasurement of
the CMB lensing autospectrum. The primary motivation for
this choice is that it significantly simplifies the analysis
because it allows us to ignore covariance between the 5 ×
2 pt data vector and the CMB lensing autospectrum. This
simplification comes at no reduction in cosmological con-
straining power. Furthermore, the SPTþ Planck and
Planck-only measurements of the CMB lensing autospec-
trum are consistent [73].
Ignoring the covariance between the 5 × 2 pt data vector

and the Planck CMB lensing autospectrum measurements
is justified for several reasons. First, the CMB lensing
autospectrum is most sensitive to large scale structure at
z ∼ 2, at significantly higher redshifts than that probed by
the 5 × 2 pt data vector. Second, the instrumental noise in
the SPT CMB temperature map is uncorrelated with noise
in the Planck CMB lensing maps. Finally, and most
significantly, the measurements of the 5 × 2 pt data vector
presented here are derived from roughly 1300 deg2 of the
sky, while the Planck lensing autospectrum measurements
are full-sky. Consequently, a large fraction of the signal and
noise in the Planck full-sky lensing measurements is
uncorrelated with that of the 5 × 2 pt data vector. We
therefore treat the Planck CMB lensing measurements as
independent of the 5 × 2 pt measurements in this analysis.
The cosmological constraints from Planck lensing auto-

spectrum measurements alone are shown as the gray
contours in Fig. 4. The constraints from the 5 × 2 pt
analysis and those of the Planck lensing autospectrum
overlap in this two dimensional projection of the

multidimensional posteriors. We find an evidence ratio
of log10R ¼ 4.1 when evaluating consistency between the
5 × 2 pt data vector and the Planck lensing autospectrum
measurements, indicating “decisive” preference on the
Jeffreys scale for the consistency model.
When using the PPD to assess consistency, we set D2

equal to wκCMBκCMBðθÞ and set D1 equal to the 5 × 2 pt data
vector. The p-value computed from the PPD is determined
to be p ¼ 0.09, therefore no significant evidence for
inconsistency between the 5 × 2 pt and wκCMBκCMB measure-
ments in the context of ΛCDM. The distributions of the test
statistic for the data and realizations are shown in Fig. 6 in
the Appendix C.

F. Combined constraints from 5 × 2 pt
and the Planck lensing autospectrum

Having found that the cosmological constraints from the
5 × 2 pt and Planck lensing analyses are statistically
consistent, we perform a joint analysis of both datasets,
i.e., of the 6 × 2 pt data vector. The constraints resulting
from the analysis of this joint data vector are shown as the
solid red contour in Fig. 4 (constraints on more parameters
can be found in Sec. VII D).
As seen in Fig. 4, the DESþ SPTþ Planck 5 × 2 pt

analysis yields cosmological constraints that are comple-
mentary to the autospectrum of Planck CMB lensing, as
evidenced by the nearly orthogonal degeneracy directions
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are derived from the Planck 2015 lensing data [21]. The 5 × 2 pt
contours are identical to those in Fig. 2. The κCMBκCMB
constraints are complementary to those of the 5 × 2 pt analysis.
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in O18b. Similarly, cosmological constraints from the joint
analysis of wδgκCMBðθÞ and wδgδgðθÞ were presented in O18a.
Here, we focus on Ωm and S8 as these parameters are

tightly constrained in 3 × 2 pt analysis, although con-
straints on several other parameters of interest are provided
in Appendix D. From the joint analysis of wδgκCMBðθÞ and
wγtκCMBðθÞ, we obtain the constraints

Ωm ¼ 0.250þ0.040
−0.043 ;

σ8 ¼ 0.792þ0.051
−0.096 ;

S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
¼ 0.694þ0.080

−0.059 :

These constraints are shown as the orange contours in
Fig. 2. Also overlaid in gray are the constraints from the
3 × 2 pt analysis. While the signal-to-noise of wδgκCMBðθÞ þ
wγtκCMBðθÞ is lower than that of 3 × 2 pt, we observe that the
degeneracy direction is complementary. This suggests that
once the constraining power of wδgκCMBðθÞ þ wγtκCMBðθÞ
becomes more competitive, combining wδgκCMBðθÞ þ
wγtκCMBðθÞ with 3 × 2 pt could shrink the contours more
efficiently due to degeneracy breaking.

B. Consistency between wδgκCMBðθÞ+wγtκCMBðθÞ
and 3 × 2 pt

The contours corresponding to wδgκCMBðθÞ þ wγtκCMBðθÞ
(blue) and 3 × 2 pt (gray) shown in Fig. 2 appear to be in
good agreement. However, since projections of the high-

dimensional posterior (in this case 26 dimensional) into two
dimensions can potentially hide tensions between the two
constraints, we numerically assess tension between the two
constraints using the two approaches described in Sec. V.
When evaluating consistency between wδgκCMBðθÞ þ

wγtκCMBðθÞ and 3 × 2 pt using the evidence ratio defined
in Eq. (19), we find log10 R ¼ 2.3. On the Jeffreys scale,
this indicates “decisive” preference for the consistency
model. This preference can be interpreted as evidence for
consistency between the two datasets in the context
of ΛCDM.
To use the PPD to assess consistency, we set D2 equal to

the combination of wδgκCMBðθÞ and wγtκCMBðθÞ, and set D1

equal to the 3 × 2 pt data vector. Using the methods
described in Sec. V B, we calculate p ¼ 0.48 for this test,
indicating that distribution of the test statistic TðD;ϑÞ
inferred from the measurements of wδgκCMBðθÞ and
wγtκCMBðθÞ is statistically likely given the posterior on
model parameters from the analysis of the 3 × 2 pt data
vector. In other words, there is no evidence for incon-
sistency between wδgκCMBðθÞ þ wγtκCMBðθÞ and the 3 × 2 pt
measurements. The distribution of TðD2; ϑÞ and TðDsim

2 ; ϑÞ
is shown in Fig. 5 in the Appendix C. Consequently, both
the evidence ratio metric and PPD metric indicate that there
is no evidence for inconsistency between wδgκCMBðθÞ þ
wγtκCMBðθÞ and the 3 × 2 pt measurements in the context
of flat ΛCDM.

C. 5 × 2 pt constraints

Since we find that the 3 × 2 pt and wδgκCMBðθÞ þ
wγtκCMBðθÞ measurements are not in tension using both
the evidence ratio and PPD approaches, we now perform a
joint analysis of the 3 × 2 pt, wδgκCMBðθÞ, and wγtκCMBðθÞ
data vectors, i.e., the 5 × 2 pt combination. Note that this
analysis includes covariance between 3 × 2 pt and the
ðwδgκCMBðθÞ; wγtκCMBðθÞÞ observables.
The cosmological constraints from this joint analysis are

shown as gold contours in Fig. 2 (constraints on more
parameters can be found in Sec. VII D). The cosmological
constraints resulting from the 5 × 2 pt analysis are

Ωm ¼ 0.260þ0.029
−0.019 ;

σ8 ¼ 0.821þ0.058
−0.045 ;

S8 ¼ 0.782þ0.019
−0.025 :

The improvement in constraints when moving from the
3 × 2 pt to 5 × 2 pt analysis is small when considering the
marginalized constraints on parameters. In Fig. 2, some
tightening of the constraints can be seen at highΩm and low
σ8. Some additional improvements can be seen in
Appendix D. We note that the parameters ns, Ωb, h0,
Ωνh2 are all prior dominated in both the 3 × 2 pt and
5 × 2 pt analyses.
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correlations with κCMB does not add significant con-
straining power beyond that of the 3 × 2 pt data vector.

E. Consistency with Planck measurements
of the CMB lensing autospectrum

While the 5 × 2 pt data vector includes cross-correlations
of galaxies and galaxy shears with CMB lensing, it does not
include the CMB lensing autospectrum. Both the 5 × 2 pt
data vector and CMB lensing autospectrum are sensitive to
the same physics, although theCMB lensing autospectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ∼ 2. Consistency between these two
datasets is therefore a powerful test of the data and the
assumptions of the cosmological model.
Measurements of the CMB lensing autospectrum over

the 2500 deg2 patch covered by the SPT-SZ survey have
been obtained from a combination of SPT and Planck data
by [25], and this power spectrum has been used to generate
cosmological constraints by [73]. Because of lower noise
and higher resolution of the SPT maps relative to Planck,
the cosmological constraints obtained in [73] are compa-
rable to those of the full sky measurements of the CMB
lensing autospectrum presented in [21], despite the large
difference in sky coverage.
In this analysis, we choose to test for consistency between

the 5 × 2 pt data vector and thePlanck-onlymeasurement of
the CMB lensing autospectrum. The primary motivation for
this choice is that it significantly simplifies the analysis
because it allows us to ignore covariance between the 5 ×
2 pt data vector and the CMB lensing autospectrum. This
simplification comes at no reduction in cosmological con-
straining power. Furthermore, the SPTþ Planck and
Planck-only measurements of the CMB lensing autospec-
trum are consistent [73].
Ignoring the covariance between the 5 × 2 pt data vector

and the Planck CMB lensing autospectrum measurements
is justified for several reasons. First, the CMB lensing
autospectrum is most sensitive to large scale structure at
z ∼ 2, at significantly higher redshifts than that probed by
the 5 × 2 pt data vector. Second, the instrumental noise in
the SPT CMB temperature map is uncorrelated with noise
in the Planck CMB lensing maps. Finally, and most
significantly, the measurements of the 5 × 2 pt data vector
presented here are derived from roughly 1300 deg2 of the
sky, while the Planck lensing autospectrum measurements
are full-sky. Consequently, a large fraction of the signal and
noise in the Planck full-sky lensing measurements is
uncorrelated with that of the 5 × 2 pt data vector. We
therefore treat the Planck CMB lensing measurements as
independent of the 5 × 2 pt measurements in this analysis.
The cosmological constraints from Planck lensing auto-

spectrum measurements alone are shown as the gray
contours in Fig. 4. The constraints from the 5 × 2 pt
analysis and those of the Planck lensing autospectrum
overlap in this two dimensional projection of the

multidimensional posteriors. We find an evidence ratio
of log10R ¼ 4.1 when evaluating consistency between the
5 × 2 pt data vector and the Planck lensing autospectrum
measurements, indicating “decisive” preference on the
Jeffreys scale for the consistency model.
When using the PPD to assess consistency, we set D2

equal to wκCMBκCMBðθÞ and set D1 equal to the 5 × 2 pt data
vector. The p-value computed from the PPD is determined
to be p ¼ 0.09, therefore no significant evidence for
inconsistency between the 5 × 2 pt and wκCMBκCMB measure-
ments in the context of ΛCDM. The distributions of the test
statistic for the data and realizations are shown in Fig. 6 in
the Appendix C.

F. Combined constraints from 5 × 2 pt
and the Planck lensing autospectrum

Having found that the cosmological constraints from the
5 × 2 pt and Planck lensing analyses are statistically
consistent, we perform a joint analysis of both datasets,
i.e., of the 6 × 2 pt data vector. The constraints resulting
from the analysis of this joint data vector are shown as the
solid red contour in Fig. 4 (constraints on more parameters
can be found in Sec. VII D).
As seen in Fig. 4, the DESþ SPTþ Planck 5 × 2 pt

analysis yields cosmological constraints that are comple-
mentary to the autospectrum of Planck CMB lensing, as
evidenced by the nearly orthogonal degeneracy directions
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FIG. 4. Marginalized constraints on Ωm and S8 ≡
σ8
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in the context of ΛCDM þ ν cosmology: 5 × 2 pt (gray),
κCMBκCMB (open red), and 6 × 2 pt (red). The wκCMBκCMB contours
are derived from the Planck 2015 lensing data [21]. The 5 × 2 pt
contours are identical to those in Fig. 2. The κCMBκCMB
constraints are complementary to those of the 5 × 2 pt analysis.
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in O18b. Similarly, cosmological constraints from the joint
analysis of wδgκCMBðθÞ and wδgδgðθÞ were presented in O18a.
Here, we focus on Ωm and S8 as these parameters are

tightly constrained in 3 × 2 pt analysis, although con-
straints on several other parameters of interest are provided
in Appendix D. From the joint analysis of wδgκCMBðθÞ and
wγtκCMBðθÞ, we obtain the constraints

Ωm ¼ 0.250þ0.040
−0.043 ;

σ8 ¼ 0.792þ0.051
−0.096 ;

S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
¼ 0.694þ0.080

−0.059 :

These constraints are shown as the orange contours in
Fig. 2. Also overlaid in gray are the constraints from the
3 × 2 pt analysis. While the signal-to-noise of wδgκCMBðθÞ þ
wγtκCMBðθÞ is lower than that of 3 × 2 pt, we observe that the
degeneracy direction is complementary. This suggests that
once the constraining power of wδgκCMBðθÞ þ wγtκCMBðθÞ
becomes more competitive, combining wδgκCMBðθÞ þ
wγtκCMBðθÞ with 3 × 2 pt could shrink the contours more
efficiently due to degeneracy breaking.

B. Consistency between wδgκCMBðθÞ+wγtκCMBðθÞ
and 3 × 2 pt

The contours corresponding to wδgκCMBðθÞ þ wγtκCMBðθÞ
(blue) and 3 × 2 pt (gray) shown in Fig. 2 appear to be in
good agreement. However, since projections of the high-

dimensional posterior (in this case 26 dimensional) into two
dimensions can potentially hide tensions between the two
constraints, we numerically assess tension between the two
constraints using the two approaches described in Sec. V.
When evaluating consistency between wδgκCMBðθÞ þ

wγtκCMBðθÞ and 3 × 2 pt using the evidence ratio defined
in Eq. (19), we find log10 R ¼ 2.3. On the Jeffreys scale,
this indicates “decisive” preference for the consistency
model. This preference can be interpreted as evidence for
consistency between the two datasets in the context
of ΛCDM.
To use the PPD to assess consistency, we set D2 equal to

the combination of wδgκCMBðθÞ and wγtκCMBðθÞ, and set D1

equal to the 3 × 2 pt data vector. Using the methods
described in Sec. V B, we calculate p ¼ 0.48 for this test,
indicating that distribution of the test statistic TðD;ϑÞ
inferred from the measurements of wδgκCMBðθÞ and
wγtκCMBðθÞ is statistically likely given the posterior on
model parameters from the analysis of the 3 × 2 pt data
vector. In other words, there is no evidence for incon-
sistency between wδgκCMBðθÞ þ wγtκCMBðθÞ and the 3 × 2 pt
measurements. The distribution of TðD2; ϑÞ and TðDsim

2 ; ϑÞ
is shown in Fig. 5 in the Appendix C. Consequently, both
the evidence ratio metric and PPD metric indicate that there
is no evidence for inconsistency between wδgκCMBðθÞ þ
wγtκCMBðθÞ and the 3 × 2 pt measurements in the context
of flat ΛCDM.

C. 5 × 2 pt constraints

Since we find that the 3 × 2 pt and wδgκCMBðθÞ þ
wγtκCMBðθÞ measurements are not in tension using both
the evidence ratio and PPD approaches, we now perform a
joint analysis of the 3 × 2 pt, wδgκCMBðθÞ, and wγtκCMBðθÞ
data vectors, i.e., the 5 × 2 pt combination. Note that this
analysis includes covariance between 3 × 2 pt and the
ðwδgκCMBðθÞ; wγtκCMBðθÞÞ observables.
The cosmological constraints from this joint analysis are

shown as gold contours in Fig. 2 (constraints on more
parameters can be found in Sec. VII D). The cosmological
constraints resulting from the 5 × 2 pt analysis are

Ωm ¼ 0.260þ0.029
−0.019 ;

σ8 ¼ 0.821þ0.058
−0.045 ;

S8 ¼ 0.782þ0.019
−0.025 :

The improvement in constraints when moving from the
3 × 2 pt to 5 × 2 pt analysis is small when considering the
marginalized constraints on parameters. In Fig. 2, some
tightening of the constraints can be seen at highΩm and low
σ8. Some additional improvements can be seen in
Appendix D. We note that the parameters ns, Ωb, h0,
Ωνh2 are all prior dominated in both the 3 × 2 pt and
5 × 2 pt analyses.
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degeneracy direction compared to those of 3 × 2 pt.
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correlations with κCMB does not add significant con-
straining power beyond that of the 3 × 2 pt data vector.

E. Consistency with Planck measurements
of the CMB lensing autospectrum

While the 5 × 2 pt data vector includes cross-correlations
of galaxies and galaxy shears with CMB lensing, it does not
include the CMB lensing autospectrum. Both the 5 × 2 pt
data vector and CMB lensing autospectrum are sensitive to
the same physics, although theCMB lensing autospectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ∼ 2. Consistency between these two
datasets is therefore a powerful test of the data and the
assumptions of the cosmological model.
Measurements of the CMB lensing autospectrum over

the 2500 deg2 patch covered by the SPT-SZ survey have
been obtained from a combination of SPT and Planck data
by [25], and this power spectrum has been used to generate
cosmological constraints by [73]. Because of lower noise
and higher resolution of the SPT maps relative to Planck,
the cosmological constraints obtained in [73] are compa-
rable to those of the full sky measurements of the CMB
lensing autospectrum presented in [21], despite the large
difference in sky coverage.
In this analysis, we choose to test for consistency between

the 5 × 2 pt data vector and thePlanck-onlymeasurement of
the CMB lensing autospectrum. The primary motivation for
this choice is that it significantly simplifies the analysis
because it allows us to ignore covariance between the 5 ×
2 pt data vector and the CMB lensing autospectrum. This
simplification comes at no reduction in cosmological con-
straining power. Furthermore, the SPTþ Planck and
Planck-only measurements of the CMB lensing autospec-
trum are consistent [73].
Ignoring the covariance between the 5 × 2 pt data vector

and the Planck CMB lensing autospectrum measurements
is justified for several reasons. First, the CMB lensing
autospectrum is most sensitive to large scale structure at
z ∼ 2, at significantly higher redshifts than that probed by
the 5 × 2 pt data vector. Second, the instrumental noise in
the SPT CMB temperature map is uncorrelated with noise
in the Planck CMB lensing maps. Finally, and most
significantly, the measurements of the 5 × 2 pt data vector
presented here are derived from roughly 1300 deg2 of the
sky, while the Planck lensing autospectrum measurements
are full-sky. Consequently, a large fraction of the signal and
noise in the Planck full-sky lensing measurements is
uncorrelated with that of the 5 × 2 pt data vector. We
therefore treat the Planck CMB lensing measurements as
independent of the 5 × 2 pt measurements in this analysis.
The cosmological constraints from Planck lensing auto-

spectrum measurements alone are shown as the gray
contours in Fig. 4. The constraints from the 5 × 2 pt
analysis and those of the Planck lensing autospectrum
overlap in this two dimensional projection of the

multidimensional posteriors. We find an evidence ratio
of log10R ¼ 4.1 when evaluating consistency between the
5 × 2 pt data vector and the Planck lensing autospectrum
measurements, indicating “decisive” preference on the
Jeffreys scale for the consistency model.
When using the PPD to assess consistency, we set D2

equal to wκCMBκCMBðθÞ and set D1 equal to the 5 × 2 pt data
vector. The p-value computed from the PPD is determined
to be p ¼ 0.09, therefore no significant evidence for
inconsistency between the 5 × 2 pt and wκCMBκCMB measure-
ments in the context of ΛCDM. The distributions of the test
statistic for the data and realizations are shown in Fig. 6 in
the Appendix C.

F. Combined constraints from 5 × 2 pt
and the Planck lensing autospectrum

Having found that the cosmological constraints from the
5 × 2 pt and Planck lensing analyses are statistically
consistent, we perform a joint analysis of both datasets,
i.e., of the 6 × 2 pt data vector. The constraints resulting
from the analysis of this joint data vector are shown as the
solid red contour in Fig. 4 (constraints on more parameters
can be found in Sec. VII D).
As seen in Fig. 4, the DESþ SPTþ Planck 5 × 2 pt

analysis yields cosmological constraints that are comple-
mentary to the autospectrum of Planck CMB lensing, as
evidenced by the nearly orthogonal degeneracy directions
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FIG. 4. Marginalized constraints on Ωm and S8 ≡
σ8
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in the context of ΛCDM þ ν cosmology: 5 × 2 pt (gray),
κCMBκCMB (open red), and 6 × 2 pt (red). The wκCMBκCMB contours
are derived from the Planck 2015 lensing data [21]. The 5 × 2 pt
contours are identical to those in Fig. 2. The κCMBκCMB
constraints are complementary to those of the 5 × 2 pt analysis.
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in O18b. Similarly, cosmological constraints from the joint
analysis of wδgκCMBðθÞ and wδgδgðθÞ were presented in O18a.
Here, we focus on Ωm and S8 as these parameters are

tightly constrained in 3 × 2 pt analysis, although con-
straints on several other parameters of interest are provided
in Appendix D. From the joint analysis of wδgκCMBðθÞ and
wγtκCMBðθÞ, we obtain the constraints

Ωm ¼ 0.250þ0.040
−0.043 ;

σ8 ¼ 0.792þ0.051
−0.096 ;

S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
¼ 0.694þ0.080

−0.059 :

These constraints are shown as the orange contours in
Fig. 2. Also overlaid in gray are the constraints from the
3 × 2 pt analysis. While the signal-to-noise of wδgκCMBðθÞ þ
wγtκCMBðθÞ is lower than that of 3 × 2 pt, we observe that the
degeneracy direction is complementary. This suggests that
once the constraining power of wδgκCMBðθÞ þ wγtκCMBðθÞ
becomes more competitive, combining wδgκCMBðθÞ þ
wγtκCMBðθÞ with 3 × 2 pt could shrink the contours more
efficiently due to degeneracy breaking.

B. Consistency between wδgκCMBðθÞ+wγtκCMBðθÞ
and 3 × 2 pt

The contours corresponding to wδgκCMBðθÞ þ wγtκCMBðθÞ
(blue) and 3 × 2 pt (gray) shown in Fig. 2 appear to be in
good agreement. However, since projections of the high-

dimensional posterior (in this case 26 dimensional) into two
dimensions can potentially hide tensions between the two
constraints, we numerically assess tension between the two
constraints using the two approaches described in Sec. V.
When evaluating consistency between wδgκCMBðθÞ þ

wγtκCMBðθÞ and 3 × 2 pt using the evidence ratio defined
in Eq. (19), we find log10 R ¼ 2.3. On the Jeffreys scale,
this indicates “decisive” preference for the consistency
model. This preference can be interpreted as evidence for
consistency between the two datasets in the context
of ΛCDM.
To use the PPD to assess consistency, we set D2 equal to

the combination of wδgκCMBðθÞ and wγtκCMBðθÞ, and set D1

equal to the 3 × 2 pt data vector. Using the methods
described in Sec. V B, we calculate p ¼ 0.48 for this test,
indicating that distribution of the test statistic TðD;ϑÞ
inferred from the measurements of wδgκCMBðθÞ and
wγtκCMBðθÞ is statistically likely given the posterior on
model parameters from the analysis of the 3 × 2 pt data
vector. In other words, there is no evidence for incon-
sistency between wδgκCMBðθÞ þ wγtκCMBðθÞ and the 3 × 2 pt
measurements. The distribution of TðD2; ϑÞ and TðDsim

2 ; ϑÞ
is shown in Fig. 5 in the Appendix C. Consequently, both
the evidence ratio metric and PPD metric indicate that there
is no evidence for inconsistency between wδgκCMBðθÞ þ
wγtκCMBðθÞ and the 3 × 2 pt measurements in the context
of flat ΛCDM.

C. 5 × 2 pt constraints

Since we find that the 3 × 2 pt and wδgκCMBðθÞ þ
wγtκCMBðθÞ measurements are not in tension using both
the evidence ratio and PPD approaches, we now perform a
joint analysis of the 3 × 2 pt, wδgκCMBðθÞ, and wγtκCMBðθÞ
data vectors, i.e., the 5 × 2 pt combination. Note that this
analysis includes covariance between 3 × 2 pt and the
ðwδgκCMBðθÞ; wγtκCMBðθÞÞ observables.
The cosmological constraints from this joint analysis are

shown as gold contours in Fig. 2 (constraints on more
parameters can be found in Sec. VII D). The cosmological
constraints resulting from the 5 × 2 pt analysis are

Ωm ¼ 0.260þ0.029
−0.019 ;

σ8 ¼ 0.821þ0.058
−0.045 ;

S8 ¼ 0.782þ0.019
−0.025 :

The improvement in constraints when moving from the
3 × 2 pt to 5 × 2 pt analysis is small when considering the
marginalized constraints on parameters. In Fig. 2, some
tightening of the constraints can be seen at highΩm and low
σ8. Some additional improvements can be seen in
Appendix D. We note that the parameters ns, Ωb, h0,
Ωνh2 are all prior dominated in both the 3 × 2 pt and
5 × 2 pt analyses.
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note that the wγtκCMBðθÞ þ wδgκCMBðθÞ constraints have a different
degeneracy direction compared to those of 3 × 2 pt.
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correlations with κCMB does not add significant con-
straining power beyond that of the 3 × 2 pt data vector.

E. Consistency with Planck measurements
of the CMB lensing autospectrum

While the 5 × 2 pt data vector includes cross-correlations
of galaxies and galaxy shears with CMB lensing, it does not
include the CMB lensing autospectrum. Both the 5 × 2 pt
data vector and CMB lensing autospectrum are sensitive to
the same physics, although theCMB lensing autospectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ∼ 2. Consistency between these two
datasets is therefore a powerful test of the data and the
assumptions of the cosmological model.
Measurements of the CMB lensing autospectrum over

the 2500 deg2 patch covered by the SPT-SZ survey have
been obtained from a combination of SPT and Planck data
by [25], and this power spectrum has been used to generate
cosmological constraints by [73]. Because of lower noise
and higher resolution of the SPT maps relative to Planck,
the cosmological constraints obtained in [73] are compa-
rable to those of the full sky measurements of the CMB
lensing autospectrum presented in [21], despite the large
difference in sky coverage.
In this analysis, we choose to test for consistency between

the 5 × 2 pt data vector and thePlanck-onlymeasurement of
the CMB lensing autospectrum. The primary motivation for
this choice is that it significantly simplifies the analysis
because it allows us to ignore covariance between the 5 ×
2 pt data vector and the CMB lensing autospectrum. This
simplification comes at no reduction in cosmological con-
straining power. Furthermore, the SPTþ Planck and
Planck-only measurements of the CMB lensing autospec-
trum are consistent [73].
Ignoring the covariance between the 5 × 2 pt data vector

and the Planck CMB lensing autospectrum measurements
is justified for several reasons. First, the CMB lensing
autospectrum is most sensitive to large scale structure at
z ∼ 2, at significantly higher redshifts than that probed by
the 5 × 2 pt data vector. Second, the instrumental noise in
the SPT CMB temperature map is uncorrelated with noise
in the Planck CMB lensing maps. Finally, and most
significantly, the measurements of the 5 × 2 pt data vector
presented here are derived from roughly 1300 deg2 of the
sky, while the Planck lensing autospectrum measurements
are full-sky. Consequently, a large fraction of the signal and
noise in the Planck full-sky lensing measurements is
uncorrelated with that of the 5 × 2 pt data vector. We
therefore treat the Planck CMB lensing measurements as
independent of the 5 × 2 pt measurements in this analysis.
The cosmological constraints from Planck lensing auto-

spectrum measurements alone are shown as the gray
contours in Fig. 4. The constraints from the 5 × 2 pt
analysis and those of the Planck lensing autospectrum
overlap in this two dimensional projection of the

multidimensional posteriors. We find an evidence ratio
of log10R ¼ 4.1 when evaluating consistency between the
5 × 2 pt data vector and the Planck lensing autospectrum
measurements, indicating “decisive” preference on the
Jeffreys scale for the consistency model.
When using the PPD to assess consistency, we set D2

equal to wκCMBκCMBðθÞ and set D1 equal to the 5 × 2 pt data
vector. The p-value computed from the PPD is determined
to be p ¼ 0.09, therefore no significant evidence for
inconsistency between the 5 × 2 pt and wκCMBκCMB measure-
ments in the context of ΛCDM. The distributions of the test
statistic for the data and realizations are shown in Fig. 6 in
the Appendix C.

F. Combined constraints from 5 × 2 pt
and the Planck lensing autospectrum

Having found that the cosmological constraints from the
5 × 2 pt and Planck lensing analyses are statistically
consistent, we perform a joint analysis of both datasets,
i.e., of the 6 × 2 pt data vector. The constraints resulting
from the analysis of this joint data vector are shown as the
solid red contour in Fig. 4 (constraints on more parameters
can be found in Sec. VII D).
As seen in Fig. 4, the DESþ SPTþ Planck 5 × 2 pt

analysis yields cosmological constraints that are comple-
mentary to the autospectrum of Planck CMB lensing, as
evidenced by the nearly orthogonal degeneracy directions
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FIG. 4. Marginalized constraints on Ωm and S8 ≡
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
for different combinations of correlation functions
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κCMBκCMB (open red), and 6 × 2 pt (red). The wκCMBκCMB contours
are derived from the Planck 2015 lensing data [21]. The 5 × 2 pt
contours are identical to those in Fig. 2. The κCMBκCMB
constraints are complementary to those of the 5 × 2 pt analysis.
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in O18b. Similarly, cosmological constraints from the joint
analysis of wδgκCMBðθÞ and wδgδgðθÞ were presented in O18a.
Here, we focus on Ωm and S8 as these parameters are

tightly constrained in 3 × 2 pt analysis, although con-
straints on several other parameters of interest are provided
in Appendix D. From the joint analysis of wδgκCMBðθÞ and
wγtκCMBðθÞ, we obtain the constraints

Ωm ¼ 0.250þ0.040
−0.043 ;

σ8 ¼ 0.792þ0.051
−0.096 ;

S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩm=0.3Þ

p
¼ 0.694þ0.080

−0.059 :

These constraints are shown as the orange contours in
Fig. 2. Also overlaid in gray are the constraints from the
3 × 2 pt analysis. While the signal-to-noise of wδgκCMBðθÞ þ
wγtκCMBðθÞ is lower than that of 3 × 2 pt, we observe that the
degeneracy direction is complementary. This suggests that
once the constraining power of wδgκCMBðθÞ þ wγtκCMBðθÞ
becomes more competitive, combining wδgκCMBðθÞ þ
wγtκCMBðθÞ with 3 × 2 pt could shrink the contours more
efficiently due to degeneracy breaking.

B. Consistency between wδgκCMBðθÞ+wγtκCMBðθÞ
and 3 × 2 pt

The contours corresponding to wδgκCMBðθÞ þ wγtκCMBðθÞ
(blue) and 3 × 2 pt (gray) shown in Fig. 2 appear to be in
good agreement. However, since projections of the high-

dimensional posterior (in this case 26 dimensional) into two
dimensions can potentially hide tensions between the two
constraints, we numerically assess tension between the two
constraints using the two approaches described in Sec. V.
When evaluating consistency between wδgκCMBðθÞ þ

wγtκCMBðθÞ and 3 × 2 pt using the evidence ratio defined
in Eq. (19), we find log10 R ¼ 2.3. On the Jeffreys scale,
this indicates “decisive” preference for the consistency
model. This preference can be interpreted as evidence for
consistency between the two datasets in the context
of ΛCDM.
To use the PPD to assess consistency, we set D2 equal to

the combination of wδgκCMBðθÞ and wγtκCMBðθÞ, and set D1

equal to the 3 × 2 pt data vector. Using the methods
described in Sec. V B, we calculate p ¼ 0.48 for this test,
indicating that distribution of the test statistic TðD;ϑÞ
inferred from the measurements of wδgκCMBðθÞ and
wγtκCMBðθÞ is statistically likely given the posterior on
model parameters from the analysis of the 3 × 2 pt data
vector. In other words, there is no evidence for incon-
sistency between wδgκCMBðθÞ þ wγtκCMBðθÞ and the 3 × 2 pt
measurements. The distribution of TðD2; ϑÞ and TðDsim

2 ; ϑÞ
is shown in Fig. 5 in the Appendix C. Consequently, both
the evidence ratio metric and PPD metric indicate that there
is no evidence for inconsistency between wδgκCMBðθÞ þ
wγtκCMBðθÞ and the 3 × 2 pt measurements in the context
of flat ΛCDM.

C. 5 × 2 pt constraints

Since we find that the 3 × 2 pt and wδgκCMBðθÞ þ
wγtκCMBðθÞ measurements are not in tension using both
the evidence ratio and PPD approaches, we now perform a
joint analysis of the 3 × 2 pt, wδgκCMBðθÞ, and wγtκCMBðθÞ
data vectors, i.e., the 5 × 2 pt combination. Note that this
analysis includes covariance between 3 × 2 pt and the
ðwδgκCMBðθÞ; wγtκCMBðθÞÞ observables.
The cosmological constraints from this joint analysis are

shown as gold contours in Fig. 2 (constraints on more
parameters can be found in Sec. VII D). The cosmological
constraints resulting from the 5 × 2 pt analysis are

Ωm ¼ 0.260þ0.029
−0.019 ;

σ8 ¼ 0.821þ0.058
−0.045 ;

S8 ¼ 0.782þ0.019
−0.025 :

The improvement in constraints when moving from the
3 × 2 pt to 5 × 2 pt analysis is small when considering the
marginalized constraints on parameters. In Fig. 2, some
tightening of the constraints can be seen at highΩm and low
σ8. Some additional improvements can be seen in
Appendix D. We note that the parameters ns, Ωb, h0,
Ωνh2 are all prior dominated in both the 3 × 2 pt and
5 × 2 pt analyses.
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correlations with κCMB does not add significant con-
straining power beyond that of the 3 × 2 pt data vector.

E. Consistency with Planck measurements
of the CMB lensing autospectrum

While the 5 × 2 pt data vector includes cross-correlations
of galaxies and galaxy shears with CMB lensing, it does not
include the CMB lensing autospectrum. Both the 5 × 2 pt
data vector and CMB lensing autospectrum are sensitive to
the same physics, although theCMB lensing autospectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ∼ 2. Consistency between these two
datasets is therefore a powerful test of the data and the
assumptions of the cosmological model.
Measurements of the CMB lensing autospectrum over

the 2500 deg2 patch covered by the SPT-SZ survey have
been obtained from a combination of SPT and Planck data
by [25], and this power spectrum has been used to generate
cosmological constraints by [73]. Because of lower noise
and higher resolution of the SPT maps relative to Planck,
the cosmological constraints obtained in [73] are compa-
rable to those of the full sky measurements of the CMB
lensing autospectrum presented in [21], despite the large
difference in sky coverage.
In this analysis, we choose to test for consistency between

the 5 × 2 pt data vector and thePlanck-onlymeasurement of
the CMB lensing autospectrum. The primary motivation for
this choice is that it significantly simplifies the analysis
because it allows us to ignore covariance between the 5 ×
2 pt data vector and the CMB lensing autospectrum. This
simplification comes at no reduction in cosmological con-
straining power. Furthermore, the SPTþ Planck and
Planck-only measurements of the CMB lensing autospec-
trum are consistent [73].
Ignoring the covariance between the 5 × 2 pt data vector

and the Planck CMB lensing autospectrum measurements
is justified for several reasons. First, the CMB lensing
autospectrum is most sensitive to large scale structure at
z ∼ 2, at significantly higher redshifts than that probed by
the 5 × 2 pt data vector. Second, the instrumental noise in
the SPT CMB temperature map is uncorrelated with noise
in the Planck CMB lensing maps. Finally, and most
significantly, the measurements of the 5 × 2 pt data vector
presented here are derived from roughly 1300 deg2 of the
sky, while the Planck lensing autospectrum measurements
are full-sky. Consequently, a large fraction of the signal and
noise in the Planck full-sky lensing measurements is
uncorrelated with that of the 5 × 2 pt data vector. We
therefore treat the Planck CMB lensing measurements as
independent of the 5 × 2 pt measurements in this analysis.
The cosmological constraints from Planck lensing auto-

spectrum measurements alone are shown as the gray
contours in Fig. 4. The constraints from the 5 × 2 pt
analysis and those of the Planck lensing autospectrum
overlap in this two dimensional projection of the

multidimensional posteriors. We find an evidence ratio
of log10R ¼ 4.1 when evaluating consistency between the
5 × 2 pt data vector and the Planck lensing autospectrum
measurements, indicating “decisive” preference on the
Jeffreys scale for the consistency model.
When using the PPD to assess consistency, we set D2

equal to wκCMBκCMBðθÞ and set D1 equal to the 5 × 2 pt data
vector. The p-value computed from the PPD is determined
to be p ¼ 0.09, therefore no significant evidence for
inconsistency between the 5 × 2 pt and wκCMBκCMB measure-
ments in the context of ΛCDM. The distributions of the test
statistic for the data and realizations are shown in Fig. 6 in
the Appendix C.

F. Combined constraints from 5 × 2 pt
and the Planck lensing autospectrum

Having found that the cosmological constraints from the
5 × 2 pt and Planck lensing analyses are statistically
consistent, we perform a joint analysis of both datasets,
i.e., of the 6 × 2 pt data vector. The constraints resulting
from the analysis of this joint data vector are shown as the
solid red contour in Fig. 4 (constraints on more parameters
can be found in Sec. VII D).
As seen in Fig. 4, the DESþ SPTþ Planck 5 × 2 pt

analysis yields cosmological constraints that are comple-
mentary to the autospectrum of Planck CMB lensing, as
evidenced by the nearly orthogonal degeneracy directions
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tSZ bias was the main driver for our choice of angular scale cuts in DES-Y1 analysis
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FIG. 4. Biases in w�tCMB (✓) and w�gCMB (✓) relative to the error bars as a function of physical separation. Faded points are excluded by scale
cuts. Errorbars correspond to 10% of the square root of the diagonal of the covariance matrix described in §III C; for ease of visualization,
we only plot errorbars on the tSZ-biased points. The dashed line labeled ‘Masking’ refers to the roughly 1% bias induced by masking galaxy
clusters described in §IV D.

in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined e↵ect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on w�gCMB (✓),
and the nonlinear bias does not impact w�tCMB (✓) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in w�tCMB (✓). Clearly, though, removing tSZ bias from the
CMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (150, 250, 250, 150, 150) for the five redshift
bins of w�gCMB (✓), and below (400, 400, 600, 600) for the four
redshift bins of w�tCMB (✓). For w�gCMB (✓), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ��2 between the biased and unbiased data
vectors as

��2 = (dbias � dfid)T C�1 (dbias � dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled e↵ects, respectively. Including all three
unmodeled e↵ects simultaneously, before the application of
scale cuts, we find that for the combination of w�gCMB (✓) and

w�tCMB (✓), ��2 = 10.2 (with ⌫ = 90 degrees of freedom).
After the scale cuts are imposed, ��2 for the w�gCMB (✓) and
w�tCMB (✓) combination is reduced to only 0.26 (with ⌫ = 43
degrees of freedom). We compute the e↵ect of the residual
��2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of ⌦m and S 8. These two
cosmological parameters are tightly constrained by the 3⇥2pt
and 5⇥2pt analysis, and so are particularly useful for assess-
ing the e↵ectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on ⌦m and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled e↵ects when all scales are included in the analysis of
w�gCMB (✓) and w�tCMB (✓) (but imposing the fiducial scale cuts
on the 3⇥2pt subset of the data vector). In this case, the bias
induced by the unmodeled e↵ects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled e↵ects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean ⌦m is 23% of the statistical uncertainty on ⌦m. We
also note that with the scale cuts imposed, ⌦m appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the w�tCMB (✓) and w�gCMB (✓) measurements helps to
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FIG. 4. Biases in w�tCMB (✓) and w�gCMB (✓) relative to the error bars as a function of physical separation. Faded points are excluded by scale
cuts. Errorbars correspond to 10% of the square root of the diagonal of the covariance matrix described in §III C; for ease of visualization,
we only plot errorbars on the tSZ-biased points. The dashed line labeled ‘Masking’ refers to the roughly 1% bias induced by masking galaxy
clusters described in §IV D.

in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined e↵ect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on w�gCMB (✓),
and the nonlinear bias does not impact w�tCMB (✓) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in w�tCMB (✓). Clearly, though, removing tSZ bias from the
CMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (150, 250, 250, 150, 150) for the five redshift
bins of w�gCMB (✓), and below (400, 400, 600, 600) for the four
redshift bins of w�tCMB (✓). For w�gCMB (✓), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ��2 between the biased and unbiased data
vectors as

��2 = (dbias � dfid)T C�1 (dbias � dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled e↵ects, respectively. Including all three
unmodeled e↵ects simultaneously, before the application of
scale cuts, we find that for the combination of w�gCMB (✓) and

w�tCMB (✓), ��2 = 10.2 (with ⌫ = 90 degrees of freedom).
After the scale cuts are imposed, ��2 for the w�gCMB (✓) and
w�tCMB (✓) combination is reduced to only 0.26 (with ⌫ = 43
degrees of freedom). We compute the e↵ect of the residual
��2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of ⌦m and S 8. These two
cosmological parameters are tightly constrained by the 3⇥2pt
and 5⇥2pt analysis, and so are particularly useful for assess-
ing the e↵ectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on ⌦m and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled e↵ects when all scales are included in the analysis of
w�gCMB (✓) and w�tCMB (✓) (but imposing the fiducial scale cuts
on the 3⇥2pt subset of the data vector). In this case, the bias
induced by the unmodeled e↵ects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled e↵ects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean ⌦m is 23% of the statistical uncertainty on ⌦m. We
also note that with the scale cuts imposed, ⌦m appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the w�tCMB (✓) and w�gCMB (✓) measurements helps to
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FIG. 4. Biases in w�tCMB (✓) and w�gCMB (✓) relative to the error bars as a function of physical separation. Faded points are excluded by scale
cuts. Errorbars correspond to 10% of the square root of the diagonal of the covariance matrix described in §III C; for ease of visualization,
we only plot errorbars on the tSZ-biased points. The dashed line labeled ‘Masking’ refers to the roughly 1% bias induced by masking galaxy
clusters described in §IV D.

in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined e↵ect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on w�gCMB (✓),
and the nonlinear bias does not impact w�tCMB (✓) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in w�tCMB (✓). Clearly, though, removing tSZ bias from the
CMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (150, 250, 250, 150, 150) for the five redshift
bins of w�gCMB (✓), and below (400, 400, 600, 600) for the four
redshift bins of w�tCMB (✓). For w�gCMB (✓), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ��2 between the biased and unbiased data
vectors as

��2 = (dbias � dfid)T C�1 (dbias � dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled e↵ects, respectively. Including all three
unmodeled e↵ects simultaneously, before the application of
scale cuts, we find that for the combination of w�gCMB (✓) and

w�tCMB (✓), ��2 = 10.2 (with ⌫ = 90 degrees of freedom).
After the scale cuts are imposed, ��2 for the w�gCMB (✓) and
w�tCMB (✓) combination is reduced to only 0.26 (with ⌫ = 43
degrees of freedom). We compute the e↵ect of the residual
��2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of ⌦m and S 8. These two
cosmological parameters are tightly constrained by the 3⇥2pt
and 5⇥2pt analysis, and so are particularly useful for assess-
ing the e↵ectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on ⌦m and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled e↵ects when all scales are included in the analysis of
w�gCMB (✓) and w�tCMB (✓) (but imposing the fiducial scale cuts
on the 3⇥2pt subset of the data vector). In this case, the bias
induced by the unmodeled e↵ects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled e↵ects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean ⌦m is 23% of the statistical uncertainty on ⌦m. We
also note that with the scale cuts imposed, ⌦m appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the w�tCMB (✓) and w�gCMB (✓) measurements helps to
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in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined e↵ect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on w�gCMB (✓),
and the nonlinear bias does not impact w�tCMB (✓) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in w�tCMB (✓). Clearly, though, removing tSZ bias from the
CMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (150, 250, 250, 150, 150) for the five redshift
bins of w�gCMB (✓), and below (400, 400, 600, 600) for the four
redshift bins of w�tCMB (✓). For w�gCMB (✓), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ��2 between the biased and unbiased data
vectors as

��2 = (dbias � dfid)T C�1 (dbias � dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled e↵ects, respectively. Including all three
unmodeled e↵ects simultaneously, before the application of
scale cuts, we find that for the combination of w�gCMB (✓) and

w�tCMB (✓), ��2 = 10.2 (with ⌫ = 90 degrees of freedom).
After the scale cuts are imposed, ��2 for the w�gCMB (✓) and
w�tCMB (✓) combination is reduced to only 0.26 (with ⌫ = 43
degrees of freedom). We compute the e↵ect of the residual
��2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of ⌦m and S 8. These two
cosmological parameters are tightly constrained by the 3⇥2pt
and 5⇥2pt analysis, and so are particularly useful for assess-
ing the e↵ectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on ⌦m and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled e↵ects when all scales are included in the analysis of
w�gCMB (✓) and w�tCMB (✓) (but imposing the fiducial scale cuts
on the 3⇥2pt subset of the data vector). In this case, the bias
induced by the unmodeled e↵ects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled e↵ects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean ⌦m is 23% of the statistical uncertainty on ⌦m. We
also note that with the scale cuts imposed, ⌦m appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the w�tCMB (✓) and w�gCMB (✓) measurements helps to
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FIG. 4. Biases in w�tCMB (✓) and w�gCMB (✓) relative to the error bars as a function of physical separation. Faded points are excluded by scale
cuts. Errorbars correspond to 10% of the square root of the diagonal of the covariance matrix described in §III C; for ease of visualization,
we only plot errorbars on the tSZ-biased points. The dashed line labeled ‘Masking’ refers to the roughly 1% bias induced by masking galaxy
clusters described in §IV D.

in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined e↵ect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on w�gCMB (✓),
and the nonlinear bias does not impact w�tCMB (✓) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in w�tCMB (✓). Clearly, though, removing tSZ bias from the
CMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (150, 250, 250, 150, 150) for the five redshift
bins of w�gCMB (✓), and below (400, 400, 600, 600) for the four
redshift bins of w�tCMB (✓). For w�gCMB (✓), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ��2 between the biased and unbiased data
vectors as

��2 = (dbias � dfid)T C�1 (dbias � dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled e↵ects, respectively. Including all three
unmodeled e↵ects simultaneously, before the application of
scale cuts, we find that for the combination of w�gCMB (✓) and

w�tCMB (✓), ��2 = 10.2 (with ⌫ = 90 degrees of freedom).
After the scale cuts are imposed, ��2 for the w�gCMB (✓) and
w�tCMB (✓) combination is reduced to only 0.26 (with ⌫ = 43
degrees of freedom). We compute the e↵ect of the residual
��2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of ⌦m and S 8. These two
cosmological parameters are tightly constrained by the 3⇥2pt
and 5⇥2pt analysis, and so are particularly useful for assess-
ing the e↵ectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on ⌦m and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled e↵ects when all scales are included in the analysis of
w�gCMB (✓) and w�tCMB (✓) (but imposing the fiducial scale cuts
on the 3⇥2pt subset of the data vector). In this case, the bias
induced by the unmodeled e↵ects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled e↵ects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean ⌦m is 23% of the statistical uncertainty on ⌦m. We
also note that with the scale cuts imposed, ⌦m appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the w�tCMB (✓) and w�gCMB (✓) measurements helps to
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FIG. 4. Biases in w�tCMB (✓) and w�gCMB (✓) relative to the error bars as a function of physical separation. Faded points are excluded by scale
cuts. Errorbars correspond to 10% of the square root of the diagonal of the covariance matrix described in §III C; for ease of visualization,
we only plot errorbars on the tSZ-biased points. The dashed line labeled ‘Masking’ refers to the roughly 1% bias induced by masking galaxy
clusters described in §IV D.

in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined e↵ect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on w�gCMB (✓),
and the nonlinear bias does not impact w�tCMB (✓) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in w�tCMB (✓). Clearly, though, removing tSZ bias from the
CMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (150, 250, 250, 150, 150) for the five redshift
bins of w�gCMB (✓), and below (400, 400, 600, 600) for the four
redshift bins of w�tCMB (✓). For w�gCMB (✓), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ��2 between the biased and unbiased data
vectors as

��2 = (dbias � dfid)T C�1 (dbias � dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled e↵ects, respectively. Including all three
unmodeled e↵ects simultaneously, before the application of
scale cuts, we find that for the combination of w�gCMB (✓) and

w�tCMB (✓), ��2 = 10.2 (with ⌫ = 90 degrees of freedom).
After the scale cuts are imposed, ��2 for the w�gCMB (✓) and
w�tCMB (✓) combination is reduced to only 0.26 (with ⌫ = 43
degrees of freedom). We compute the e↵ect of the residual
��2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of ⌦m and S 8. These two
cosmological parameters are tightly constrained by the 3⇥2pt
and 5⇥2pt analysis, and so are particularly useful for assess-
ing the e↵ectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on ⌦m and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled e↵ects when all scales are included in the analysis of
w�gCMB (✓) and w�tCMB (✓) (but imposing the fiducial scale cuts
on the 3⇥2pt subset of the data vector). In this case, the bias
induced by the unmodeled e↵ects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled e↵ects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean ⌦m is 23% of the statistical uncertainty on ⌦m. We
also note that with the scale cuts imposed, ⌦m appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the w�tCMB (✓) and w�gCMB (✓) measurements helps to
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FIG. 4. Biases in w�tCMB (✓) and w�gCMB (✓) relative to the error bars as a function of physical separation. Faded points are excluded by scale
cuts. Errorbars correspond to 10% of the square root of the diagonal of the covariance matrix described in §III C; for ease of visualization,
we only plot errorbars on the tSZ-biased points. The dashed line labeled ‘Masking’ refers to the roughly 1% bias induced by masking galaxy
clusters described in §IV D.

in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined e↵ect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on w�gCMB (✓),
and the nonlinear bias does not impact w�tCMB (✓) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in w�tCMB (✓). Clearly, though, removing tSZ bias from the
CMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (150, 250, 250, 150, 150) for the five redshift
bins of w�gCMB (✓), and below (400, 400, 600, 600) for the four
redshift bins of w�tCMB (✓). For w�gCMB (✓), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ��2 between the biased and unbiased data
vectors as

��2 = (dbias � dfid)T C�1 (dbias � dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled e↵ects, respectively. Including all three
unmodeled e↵ects simultaneously, before the application of
scale cuts, we find that for the combination of w�gCMB (✓) and

w�tCMB (✓), ��2 = 10.2 (with ⌫ = 90 degrees of freedom).
After the scale cuts are imposed, ��2 for the w�gCMB (✓) and
w�tCMB (✓) combination is reduced to only 0.26 (with ⌫ = 43
degrees of freedom). We compute the e↵ect of the residual
��2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of ⌦m and S 8. These two
cosmological parameters are tightly constrained by the 3⇥2pt
and 5⇥2pt analysis, and so are particularly useful for assess-
ing the e↵ectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on ⌦m and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled e↵ects when all scales are included in the analysis of
w�gCMB (✓) and w�tCMB (✓) (but imposing the fiducial scale cuts
on the 3⇥2pt subset of the data vector). In this case, the bias
induced by the unmodeled e↵ects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled e↵ects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean ⌦m is 23% of the statistical uncertainty on ⌦m. We
also note that with the scale cuts imposed, ⌦m appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the w�tCMB (✓) and w�gCMB (✓) measurements helps to
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we only plot errorbars on the tSZ-biased points. The dashed line labeled ‘Masking’ refers to the roughly 1% bias induced by masking galaxy
clusters described in §IV D.

in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined e↵ect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on w�gCMB (✓),
and the nonlinear bias does not impact w�tCMB (✓) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in w�tCMB (✓). Clearly, though, removing tSZ bias from the
CMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (150, 250, 250, 150, 150) for the five redshift
bins of w�gCMB (✓), and below (400, 400, 600, 600) for the four
redshift bins of w�tCMB (✓). For w�gCMB (✓), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ��2 between the biased and unbiased data
vectors as

��2 = (dbias � dfid)T C�1 (dbias � dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled e↵ects, respectively. Including all three
unmodeled e↵ects simultaneously, before the application of
scale cuts, we find that for the combination of w�gCMB (✓) and

w�tCMB (✓), ��2 = 10.2 (with ⌫ = 90 degrees of freedom).
After the scale cuts are imposed, ��2 for the w�gCMB (✓) and
w�tCMB (✓) combination is reduced to only 0.26 (with ⌫ = 43
degrees of freedom). We compute the e↵ect of the residual
��2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of ⌦m and S 8. These two
cosmological parameters are tightly constrained by the 3⇥2pt
and 5⇥2pt analysis, and so are particularly useful for assess-
ing the e↵ectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on ⌦m and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled e↵ects when all scales are included in the analysis of
w�gCMB (✓) and w�tCMB (✓) (but imposing the fiducial scale cuts
on the 3⇥2pt subset of the data vector). In this case, the bias
induced by the unmodeled e↵ects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled e↵ects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean ⌦m is 23% of the statistical uncertainty on ⌦m. We
also note that with the scale cuts imposed, ⌦m appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the w�tCMB (✓) and w�gCMB (✓) measurements helps to
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Scale cuts

Scales used in the analysis
Omori et al. 2022
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1. Shear x CMB lensing dominates the 
joint constraints 

2. Highly consistent with cosmic shear 
measurements 

3. Constraining power is the same order 
as cosmic shear
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Investigating lens sample issues

Our constraints are mild so we do not have a definitive answer, but… 

• For MagLim, bias values agree more with gg-lensing except the last two bin where the results 
match better with clustering. 

• For redMaGiC, bias values agree more with gg-lensing. 
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DES & SPT Collaborations 2022

Used for main cosmology

Constrain cosmology +1 probe to constrain 
galaxy bias
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Part I summary

• DES uses galaxy position/shear information to extract cosmology (3 2pt) 
• By cross-correlating with CMB lensing maps we get an addition three 2pt functions 

(i.e. 6 2pt). 
• Significant improvements were made: 

• Improvement of the CMB lensing map (tSZ nulling) 
• Y3 coverage 

• shear  CMB lensing dominates the constraing power over galaxy  CMB lensing. 
• Cosmological constraints from combing the two cross-correlation probes is 

competetive with cosmic shear measurements (so we can use it to test for systematic 
errors in DES data). 

• The combined cosmological constraints are consistent with Planck primary constraints. 

×

×

× ×



Part II: MultiDark Planck 2 Synthetic Sky Simulation 
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MDPL2

MDPL2-synsky 3

Configuration

Box size 1 ⌘
�1Gpc

#part 38403

Mass resolution 1.51 ⇥ 109
⌘
�1M�

Force resolution ⇠ 15 ⌘
�1kpc (at high I)

⇠ 8 ⌘
�1kpc (at low I)

Initial redshift 120
#snap 130

Parameter Value

⌘0 0.6777
⌦m 0.307
⌦c 0.048
⌦⇤ 0.693
f8 0.818⇤

Table 1. Cosmological parameters used in the MDPL2 simulation. Note for
the value of f8, the original simulation used 0.8288. However we find that
that the amplitude of the particle power spectrum matches better with the
value given below, and hence we will use this value hereafter.

such as emission line galaxies (Alam et al. 2020) and intensity map-
ping (Yang et al. 2020), which could potentially be implemented in
our lightcone.

To construct the lightcone, the simulation box is tessellated
making use of the periodic boundary conditions, and the particles
(both the density d and distance weighted velocity Elos/32

�,8
) are

projected onto a HEALP�� grid (Górski et al. 2005) of #side = 8192
(corresponding to a pixel size of 0.43 arcminutes), with a shell width
of 25 Mpc/⌘. For every Gpc/⌘ (1 box length) in the lightcone, the
shells are rotated with a random spherical rotation angle such that
the same structure does not appear multiple times along the line of
sight (as shown in Figure 1), which poses issues for probes that are
integrated along the line of sight. The same rotations are also applied
to the halo catalogues to maintain the correlations between the
observables. From these particle density maps and halo lightcones,
we generate maps of the synthetic extra-galactic sky. This approach
was also taken in Carbone et al. (2016) to produce CMB lensing
maps, and it was shown that the measured power spectrum agrees
well with the analytic model.

While this approach has the disadvantage of losing some of the
large-scale modes as well as the line-of sight correlations (due to the
random rotations applied to the shells), the foremost advantage is
the high resolution maintained at high redshifts. Such an approach
necessary to produce reliable CIB maps, which is one of the key
component in our simulation. Additionally, since we maintain high
resolution up to high redshifts, we are also able to generate lensing
maps that are accurate down to small angular scales. Using such
maps of the lensing potential, we are able to lens the other secondary
observables to generate realistic maps that contain higher-order
correlations.

3 MODELLING OF THE SECONDARY COMPONENTS

In Table 2 we list the components implemented, and the redshift
range that each of the observables cover. For CMB lensing, we in-
tegrate up to I = 8.6 and add a Gaussian realization of the high-I
convergence between 8.6 < I < 1089. This cut-o� is chosen such
that the underlying density field is su�ciently Gaussian beyond that
redshift, and that the simulation artifacts do not dominate the struc-
ture. Additionally, we integrate the CIB, density, convergence, and

Figure 1. The scheme of box rotation used in generating lightcones from the
MDPL2 simulation box. Each individual grid represents a 1 ⌘

�1Gpc box.

Observable Redshift range

CMB lensing 0 < I < 1089
tSZ 0 < I < 3.0
kSZ 0 < I < 3.0
CIB 0 < I < 8.6

X (lensed) 0 < I < 8.6
^g, W1, W2 0 < I < 8.6

Table 2. The redshift ranges covered by the various astrophysical compo-
nents implemented in the simulation. For CMB lensing, we raytrace up to
I = 8.6, and add a Gaussian realization of the lensing potential between
8.6 < I < 1089.

galaxy shear fields up to this redshift. In Section 4.5.4, we inves-
tigate whether there are contribution to the total CIB power that
is negligible beyond this redshift cut. For both tSZ and kSZ, we
integrate up to I = 3, however, we omit the first 100 ⌘

�1Mpc of the
lightcone since since the signal from the most massive large clus-
ters at these redshifts induces significant variance in the measured
spectrum (see e.g. Osato et al. 2020).

In the following sections we describe how each of the compo-
nents are implemented and how the maps are generated.

3.1 CMB Weak Lensing

A photons’ trajectory emitted from the last scattering surface gets
deflected by the gravitational potential of the large-scale structure.
As a result, we observe a slightly distorted view of the CMB. Since
the statistical properties of the primary CMB are tightly constrained,
we are able to estimate the deflection field by observing the coupling
of modes in the lensed CMB (see Lewis & Challinor 2006 for
a review). Recent observations from experiments such as Planck
(Planck Collaboration et al. 2014c, 2016a, 2020b), ACT/ACTpol
(Sherwin et al. 2017) and SPT/SPTpol (Omori et al. 2017; Simard
et al. 2018; Wu et al. 2019; Bianchini et al. 2020) have proven
to be extremely powerful probe to measure the matter contents
and the amplitude of fluctuations up to high redshifts, as well as
providing a unique constraints on cosmological parameters such as
�0 (Baxter & Sherwin 2021), and can be used to cross-correlate with
the large-scale structure to provide an independent measurement of

MNRAS 000, 1–34 (2020)

https://www.cosmosim.org/cms/simulations/mdpl2/

• Publicly available dark matter only N-body 
simulation. 

• Rockstar halo catalogs, semi-analytic galaxy 
catalogs are available online.

https://www.cosmosim.org/cms/simulations/mdpl2/
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CMB components
Implemented CMB secondaries: 

• Thermal Sunyaev Zel’dovich effect (tSZ) 
• Kinetic Sunyaev Zel’dovich effect (kSZ) 
• Cosmic infrared background (CIB) and IR sources 
• Radio galaxies  
• CMB lensing from ray-tracing 
• galactic foregrounds from PySM3 

LSS components

• Lens galaxies:  
BYO HOD:  various groups have used MDPL2 to implement galaxies including BOSS 
& DESI. Some people are working on implementing DES-Y3 MagLim sample. Also 
have DES-Y1/DES-Y3/LSST-Y1 Poisson sampled galaxies. 

• Source galaxies: 
Shear signal from ray-tracing, with noise added by randomly rotating  from data or 

 values (includes NLA IA). Currently have DES-Y1/DES-Y3/LSST-Y1 mock catalogs. 
e1, e2

σe
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Lensing components

To produce the lensing maps: 

1. Project all the particles onto HEALPix 
shells of width of 25 Mpc/h. 

2. Apply rotation every 1Gpc/h to avoid 
repeating structure. 

3. Run raytracing at Nside=16384. 

4. Both galaxy and CMB lensing are 
processed up to z=8.6, and a Gaussian 
component is added to CMB lensing 
(to cover 8.6<z<1100).
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Implementation: tSZ

The tSZ map is generated using the MDPL2 
Rockstar halo catalog and using the Mead2020 
model, which is calibrated against the 
BAHAMAS simulation (McCarthy 2016). 

y( ̂n) =
σT

mec2 ∫LOS
dl Pe

Pbnd
e (Mvir, r) =

ρbnd
gas (Mvir, r)

mpμe
kBTgas(Mvir, r)

14 Y. Omori
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Figure 13. The auto-spectrum of the Compton-H maps assuming AGN
heating temperatures of )AGN = 108.0 K from Mead et al. (2020), after
applying the SPT-SZ mask (orange solid), Planck mask (orange dashed),
and left unmasked (orange dotted). For reference, we additionally show
the measurements from Planck (grey band), (Tanimura et al. 2021; black
circles), ACT (Sievers et al. 2013; black triangle) and SPT (Reichardt et al.
2020; black square). add BAHAMAS7.6

et al. (2020).26 On the other hand, if we instead use the B������
7.8 model, the power spectrum and measurements from data are
more consistent.

We note however that the amplitude of the kSZ spectrum is
currently not well constrained by data, and a wide range of models
are still valid. As shown in Figure 14, the modeling frontier has also
not reached a consensus and there are a variety of model prediction
for the the amplitude and the shape of the kSZ spectrum based
on analytical calculations/prescriptions (Flender et al. 2016; Stein
et al. 2020) as well as from hydrodynamical simulations (Park et al.
2018). It is expected that on-going experiments are likely to place
tighter constraints on the amplitude. Since our constraints on the
tSZ amplitude is significantly tighter relative to that of kSZ, and the
measured tSZ has a mild preference for the B������ 8.0 model,
we will adopt B������ 8.0 as the fiducial model here after.

4.5 CIB auto/cross-spectrum and number counts

From the CIB catalogs generated from assuming using the best-fit
values for )0, [, Vd obtained in Section 3.4, we compare the power
spectrum, source number counts, frequency decorrelation as well as
correlation with other observables such as CMB lensing and radio
sources.

4.5.1 Comparison of CIB power spectrum in the simulation with
measurements

Planck & Herschel frequencies:

Since the MDPL2 CIB maps are calibrated against Lenz et al.

26 Specifically, we use the constraints obtained assuming the the tSZ/kSZ
templates from Shaw et al. (2010, 2012) with a bispectrum prior ⇡kSZ

3000 =
2.8 ± 0.9`K2, and the fiducial results of ⇡✓ = 0.80 ± 0.30`K2.

Figure 14. The auto-spectrum of the kSZ map in the simulation (orange).
Also shown are measurements from other simulations (Park et al. 2018;
Stein et al. 2020; Flender et al. 2016) and the amplitude fit ⇡kSZ

✓=3000 from
George et al. (2015) and Reichardt et al. (2020). ADD LENSED KSZ

(2019), which are based on the Public Release 3 (PR3) of Planck
maps, we must take into account for the di�erences in calibration
between the PR1 (2013) and PR3 (2018) when comparing with the
results from Planck Collaboration et al. (2014e). We apply calibra-
tion factors of 1.021 0.98 and 0.96 (squared for the auto-spectrum)
to the 353, 545 and 857 GHz maps respectively, which are the
quoted calibration di�erence quoted in Mak et al. (2017) between
PR1 and PR2 (2015), and the we ignore the di�erence in calibration
of the temperature maps between PR2 and PR3. For comparisons
with measurements from (Viero et al. 2019), we apply a colour
correction factor of 1.0161/2 and 0.8051/2 to convert from Planck’s
857 and 545 GHz to Herschel’s 857GHz and 600 GHz channels. An
additional factor of 1/1.057 and 1/1.003 are applied to take in ac-
count of relative calibration (Bertincourt et al. 2016). The measured
CIB auto and cross-spectrum for Planck and Herschel frequencies
(217/353/545/857) in MDPL2 along with measurements from data
with the aforementioned calibration parameters applied are shown
in Figure 15.

Since our CIB maps are calibrated against CIB maps from Lenz
et al. 2019, by construction, we find good agreement between the
CIB power spectra in the simulation and measurements from Lenz
et al. 2019 at 353/545/857 GHz in the angular range 100 < ✓ <

2000. For the 217GHz auto/cross-power spectra, we find that the
amplitudes from MDPL2 are consistently lower at large scales below
✓ = 250. However, we also find that the measurements from Planck
Collaboration et al. (2014e) at ✓ < 250 also tends to be higher than
the measurements from Lenz et al. 2019 at 353 GHz and 857 Ghz
and therefore, we surmise that some galactic dust contamination
is contributing to the large-scale power in the measurements from
Planck Collaboration et al. (2014e).

For comparisons with Viero et al. 2019 at ✓ > 600, we
find an overall agreement, although the power spectrum ampli-
tude is mildy higher for 220⇥857 GHz and 857⇥857GHz. (⇠ 10%).

SPT frequencies:

The CIB amplitudes reported in George et al. 2015 and Reichardt

MNRAS 000, 1–37 (2020)

ρbnd
gas (Mvir, r) = ρ0 [ ln(1 + r/rs)

r/rs ]
1/Γ−1

6 Y. Omori

Parameter 107.6 [K] 107.8 [K] 108.0 [K]

n0 -0.1002 -0.1065 -0.1253
n1 -0.0456 -0.1073 -0.0111
� 1.1647 1.1770 1.1966
"0 13.1949 13.5937 14.2480
U 0.7642 0.8471 1.0314
V 0.6 0.6 0.6

log()w,0/ ) 6.6762 6.6545 6.6615
)w,1 -0.5566 -0.3652 -0.0617

Table 5. Best-fit parameters for the modelling adopted in Mead et al. (2020).

the AGN activity induces a velocity kick that follows a Maxell-
Bolzmann distribution. Aejc is obtained by solving:
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where Aesc is defined as:
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and we adopt the value [
1
= 0.5. To obtain the electron pressure

profile from this gas density profile, we use Equation 15 but adopt
the temperature )w = )w,0 exp()w,1I) as defined in the Mead et al.
(2020) model.

Finally, both of these pressure profiles are converted into a
Compton-H map by integrating along the line of sight:

H(=̂) = fT

<e22

π
LOS

3; %e, (19)

where fT is the Thomson cross-section and <e is the electron mass
and %e = %

bnd
e + %

unb
e for the Mead et al. (2020) model.

3.3 Kinetic Sunyaev-Zel’dovich e�ect

The late-time kSZ e�ect arises from the Doppler shifting of CMB
photons induced by the bulk motion of the free electrons in galaxies
and galaxy clusters (Sunyaev & Zeldovich 1980). While the tSZ
e�ect depends on the integrated electron pressure along the line of
sight, kSZ is dependent on the electron density and gas velocity
with respect to the CMB. Unlike the tSZ e�ect, the kSZ e�ect
does not have a temperature dependence and is therefore less mass
dependent, and is hence a promising probe to detect gas in lower
mass system (Schaan et al. 2020).

Several studies have attempted to measure the kSZ e�ect, pri-
marily though the approach known as the pairwise kSZ e�ect, where
signatures on the CMB from pairs of in-falling galaxy clusters are
used to measure the signal (Hand et al. 2012; Soergel et al. 2016; Li
et al. 2018). Alternative approaches such as the projected-field (Hill
et al. 2016; Ferraro et al. 2016) and velocity field reconstruction
(Schaan et al. 2016) techniques have been used as well. These mea-
surements have been detected at a significance of a few f. However,
with the upcoming galaxy surveys such as DESI and SPHEREx, the
signal is expected improve by approximately two orders of magni-
tudes (Ferraro et al. 2016).

The kSZ e�ect can be written as:✓
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where =e is the number density of electrons and Elos is the line of
sight velocity of the electrons.

We implement kSZ in the simulation using two approaches.
For the first, we use the prescription described in Flender et al.
(2016):✓
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where <part is the particle mass in the simulation, =e = ` 5bdm,
5b = ⌦b/⌦m and ` ⌘ (1�.He)/<H+.He/<He with.He = 0.2477.
We note that since this assumes that the baryonic fraction is directly
proportional to the dark matter density, it ignores baryonic feed-
back e�ects and therefore the gas profiles are expected to be more
compact than in the data.

In the second model, we use the gas profiles from the tSZ
modeling in equations 10, 16, to estimate the number density of
electrons =4 =

dgas
<p`4

. This is then multiplied with the binned veloc-
ity maps to construct the kSZ map. Since the gas profiles a derived
from hydrodynamical simulation, this results in a bloated gas profile
and is pushed out to larger radii. 8

The di�erential temperature maps are computed for each shell,
and are integrated up to I ⇠ 3.

3.4 Cosmic Infrared Background

The CIB consists of di�use infrared emission originating from dust
surrounding star forming galaxies. By measuring the clustering
signal of the CIB, we are able to study the cosmic star formation
rate as well as the environment in which these star forming galaxies
live in.

CIB has been primarily studied using infrared satellites such
as IRIS (Miville-Deschênes & Lagache 2005), Herschel (Gri�n
et al. 2010; Pilbratt et al. 2010) and 353/545/857 GHz channels of
Planck. However, while not dominant, CIB is also detected at lower
frequencies including the primary bands at which high-resolution
ground based CMB experiments operate at Dunkley et al. (2013);
Addison et al. (2013); George et al. (2015); Reichardt et al. (2020),
and therefore an accurate modelling of the CIB is important for
investigating the contamination in, for example, Compton-H map
obtained through component separation. However, predicting the
amplitude of CIB at lower frequencies is known to be di�cult since
the amplitude of CIB at those frequencies are sub-dominant relative
to other secondary components such as tSZ and radio sources.

The first step in our CIB implementation is to assign star for-
mation rate (SFR) and "⇤ to each individual halos in the simu-
lation using the code U�������M������ (Behroozi et al. 2019).9

U�������M������ assigns these two quantities according to the
halo’s properties such as redshift, potential well depth and assem-
bly history, and is constrained by observational measurements such
as stellar mass functions, SFRs, quenched fractions.

We adopt the best-fit U�������M������ model parameters
that were calibrated by comparing the model outputs based on the
B������-P����� simulation (#part = 20483

, !box = 250 ⌘
�1Mpc;

8 In practice, computing the exact number density of gas around particles
with velocity requires simultaneous processing of halos and particles and
hence is computationally intensive. Here we take the approximation that
the shells of 25 ⌘�1Mpc, is su�ciently thin such that we can take the
approximation

ÕØ
=4ELOS3; ⇡

Õ
ELOS

Ø
=43;.

9 https://bitbucket.org/pbehroozi/universemachine
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and we adopt the value [
1
= 0.5. To obtain the electron pressure

profile from this gas density profile, we use Equation 15 but adopt
the temperature )w = )w,0 exp()w,1I) as defined in the Mead et al.
(2020) model.

Finally, both of these pressure profiles are converted into a
Compton-H map by integrating along the line of sight:
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where fT is the Thomson cross-section and <e is the electron mass
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3.3 Kinetic Sunyaev-Zel’dovich e�ect

The late-time kSZ e�ect arises from the Doppler shifting of CMB
photons induced by the bulk motion of the free electrons in galaxies
and galaxy clusters (Sunyaev & Zeldovich 1980). While the tSZ
e�ect depends on the integrated electron pressure along the line of
sight, kSZ is dependent on the electron density and gas velocity
with respect to the CMB. Unlike the tSZ e�ect, the kSZ e�ect
does not have a temperature dependence and is therefore less mass
dependent, and is hence a promising probe to detect gas in lower
mass system (Schaan et al. 2020).

Several studies have attempted to measure the kSZ e�ect, pri-
marily though the approach known as the pairwise kSZ e�ect, where
signatures on the CMB from pairs of in-falling galaxy clusters are
used to measure the signal (Hand et al. 2012; Soergel et al. 2016; Li
et al. 2018). Alternative approaches such as the projected-field (Hill
et al. 2016; Ferraro et al. 2016) and velocity field reconstruction
(Schaan et al. 2016) techniques have been used as well. These mea-
surements have been detected at a significance of a few f. However,
with the upcoming galaxy surveys such as DESI and SPHEREx, the
signal is expected improve by approximately two orders of magni-
tudes (Ferraro et al. 2016).

The kSZ e�ect can be written as:✓
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where <part is the particle mass in the simulation, =e = ` 5bdm,
5b = ⌦b/⌦m and ` ⌘ (1�.He)/<H+.He/<He with.He = 0.2477.
We note that since this assumes that the baryonic fraction is directly
proportional to the dark matter density, it ignores baryonic feed-
back e�ects and therefore the gas profiles are expected to be more
compact than in the data.

In the second model, we use the gas profiles from the tSZ
modeling in equations 10, 16, to estimate the number density of
electrons =4 =

dgas
<p`4

. This is then multiplied with the binned veloc-
ity maps to construct the kSZ map. Since the gas profiles a derived
from hydrodynamical simulation, this results in a bloated gas profile
and is pushed out to larger radii. 8

The di�erential temperature maps are computed for each shell,
and are integrated up to I ⇠ 3.

3.4 Cosmic Infrared Background

The CIB consists of di�use infrared emission originating from dust
surrounding star forming galaxies. By measuring the clustering
signal of the CIB, we are able to study the cosmic star formation
rate as well as the environment in which these star forming galaxies
live in.

CIB has been primarily studied using infrared satellites such
as IRIS (Miville-Deschênes & Lagache 2005), Herschel (Gri�n
et al. 2010; Pilbratt et al. 2010) and 353/545/857 GHz channels of
Planck. However, while not dominant, CIB is also detected at lower
frequencies including the primary bands at which high-resolution
ground based CMB experiments operate at Dunkley et al. (2013);
Addison et al. (2013); George et al. (2015); Reichardt et al. (2020),
and therefore an accurate modelling of the CIB is important for
investigating the contamination in, for example, Compton-H map
obtained through component separation. However, predicting the
amplitude of CIB at lower frequencies is known to be di�cult since
the amplitude of CIB at those frequencies are sub-dominant relative
to other secondary components such as tSZ and radio sources.

The first step in our CIB implementation is to assign star for-
mation rate (SFR) and "⇤ to each individual halos in the simu-
lation using the code U�������M������ (Behroozi et al. 2019).9

U�������M������ assigns these two quantities according to the
halo’s properties such as redshift, potential well depth and assem-
bly history, and is constrained by observational measurements such
as stellar mass functions, SFRs, quenched fractions.

We adopt the best-fit U�������M������ model parameters
that were calibrated by comparing the model outputs based on the
B������-P����� simulation (#part = 20483
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8 In practice, computing the exact number density of gas around particles
with velocity requires simultaneous processing of halos and particles and
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the shells of 25 ⌘�1Mpc, is su�ciently thin such that we can take the
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1. Start from Rockstar halos. 

2. Apply UniverseMachine (get /SFR).M*

MDPL2-synsky 7
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Figure 3. Cosmic star formation rate as a function of redshift for MDPL2
(orange), B������-P����� (gray), and the data points used to constrain the
fits for B������-P����� (dark gray points). The data points are a compila-
tion from Salim et al. 2007; Bauer et al. 2013; Whitaker et al. 2014; Zwart
et al. 2014; Karim et al. 2011; Kajisawa et al. 2010; Schreiber et al. 2015;
Tomczak et al. 2016; Salmon et al. 2015; Smit et al. 2014; Labbé et al. 2013;
McLure et al. 2011.

Klypin et al. 2016; Rodríguez-Puebla et al. 2016) against observa-
tional data, provided with U�������M������ data release 1, and
directly apply the best-fit model to the MDPL2 halo catalogs and
merger trees.10 A comparison of the cosmic SFR from the two simu-
lations and observational data is shown in Figure 3. We find that the
resulting total cosmic SFR11 agrees well with the results from that
of B������-P����� despite MDPL2 having slightly worse mass
resolution (1.38 ⇥ 108

⌘
�1M� versus 1.51 ⇥ 109

⌘
�1M�). In this

study, we follow Béthermin et al. 2017 and only consider galaxies
with observed SFR of less than 1000 M�/yr since observations at
870 `m and radio suggest a rapid decline in SFR beyond that rate (da
Cunha et al. 2015; Barger et al. 2014, 2017) and galaxies exceeding
that SFR are rare.

The bolometric infrared (8-1000 `m) luminosity !IR of galax-
ies that make up the CIB is known to be more or less proportional
to their SFR (Kennicutt 1998). However, this simplistic linear rela-
tionship is known to break down for low mass galaxies, in which
some fraction of the UV light escapes. An improved model takes
into account for such an e�ect and can be written as:

!IR =
SFR

 IR +  UV10�IRX("⇤)
, (22)

where we adopt the values  UV = 2.17 ⇥ 10�10
, IR = 1.72 ⇥

10�10 from Schreiber et al. (2018) and IRX is the infra-red excess,
for which we adopt the prescription from Bouwens et al. (2016)
which is derived from ALMA observations of dust-enshrouded star-
formation galaxies in the redshift range 0 < I < 10. In particular,
we adopt their prescription with the assumption of evolving dust

10 The star formation catalogs can be accessed at
https://drive.google.com/drive/folders/1WyYFwM_
1hUX7J5d0nbljh1QAFijMcpBR?usp=sharing
11 Here we use the observed star formation rate which includes scatter,
instead of the true star formation rate from the output of U�������M������.

Figure 4. The relationship between star formation rate and infrared lumi-
nosity in the range 8-1000`m, at redshifts I = 0, 1, 3, 5 calculated using
Equations 22 and 23. As a reference, the Kennicutt’s law (Kennicutt 1998;
Kennicutt & Evans 2012) is shown in solid grey.

temperatures:

log10IRX = log10 ("⇤/"�) � 9.17. (23)

We assume that the spectral energy distribution (SED) of the
infrared galaxies take the form of a modified black body, which
transitions into a power-law Planck Collaboration et al. (2016a):
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where a0 is the frequency where the SED transitions between a mod-
ified black body and a power-law,12 and )d is the dust temperature,
for which we adopt a general redshift and specific star formation
rate (sSFR) dependent relation:

)d = )0 (1 + I)[ + 2ssfrlog10 (sSFR) . (25)

We fix Ud = 2, and estimate the values for Vd, )0, [, 2ssfr. Magnelli
et al. (2014) finds that )0 = 98K, [ = �0.065 and 2ssfr = 6.9
fits their stacked measurements well. However this fit is model
dependent (assuming Vd = 1.5) and is also light weighted as noted
in Schreiber et al. 2018. Wu & Doré (2017) adopts this relation
exactly, whereas Stein et al. (2020) drops the sSFR dependent term
and adopts the values13

)0 = 20.7, U = 0.6.
The luminosity in a given frequency channel is given as

!a = !IR,bolo (" , I) �(a,)d)g(a)Ø
3a�(a,)d)

(26)

where g(a) is the band pass function of a particular channel of
a given experiment. We then take the assigned luminosities and
redshifts to compute their spectral flux density:

(a =
!
a (1+I)

4cj2 (1 + I)
. (27)

12 The exact value of a0 is chosen such that the derivatives match at a0.
13 Note here that sSFR is typically < 1, and therefore the the second term
in Equation 25 is negative, and therefore the best-fit values for )0 and [

appear to be very di�erent.
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Figure 3. Cosmic star formation rate as a function of redshift for MDPL2
(orange), B������-P����� (gray), and the data points used to constrain the
fits for B������-P����� (dark gray points). The data points are a compila-
tion from Salim et al. 2007; Bauer et al. 2013; Whitaker et al. 2014; Zwart
et al. 2014; Karim et al. 2011; Kajisawa et al. 2010; Schreiber et al. 2015;
Tomczak et al. 2016; Salmon et al. 2015; Smit et al. 2014; Labbé et al. 2013;
McLure et al. 2011.

Klypin et al. 2016; Rodríguez-Puebla et al. 2016) against observa-
tional data, provided with U�������M������ data release 1, and
directly apply the best-fit model to the MDPL2 halo catalogs and
merger trees.10 A comparison of the cosmic SFR from the two simu-
lations and observational data is shown in Figure 3. We find that the
resulting total cosmic SFR11 agrees well with the results from that
of B������-P����� despite MDPL2 having slightly worse mass
resolution (1.38 ⇥ 108

⌘
�1M� versus 1.51 ⇥ 109

⌘
�1M�). In this

study, we follow Béthermin et al. 2017 and only consider galaxies
with observed SFR of less than 1000 M�/yr since observations at
870 `m and radio suggest a rapid decline in SFR beyond that rate (da
Cunha et al. 2015; Barger et al. 2014, 2017) and galaxies exceeding
that SFR are rare.

The bolometric infrared (8-1000 `m) luminosity !IR of galax-
ies that make up the CIB is known to be more or less proportional
to their SFR (Kennicutt 1998). However, this simplistic linear rela-
tionship is known to break down for low mass galaxies, in which
some fraction of the UV light escapes. An improved model takes
into account for such an e�ect and can be written as:

!IR =
SFR

 IR +  UV10�IRX("⇤)
, (22)

where we adopt the values  UV = 2.17 ⇥ 10�10
, IR = 1.72 ⇥

10�10 from Schreiber et al. (2018) and IRX is the infra-red excess,
for which we adopt the prescription from Bouwens et al. (2016)
which is derived from ALMA observations of dust-enshrouded star-
formation galaxies in the redshift range 0 < I < 10. In particular,
we adopt their prescription with the assumption of evolving dust

10 The star formation catalogs can be accessed at
https://drive.google.com/drive/folders/1WyYFwM_
1hUX7J5d0nbljh1QAFijMcpBR?usp=sharing
11 Here we use the observed star formation rate which includes scatter,
instead of the true star formation rate from the output of U�������M������.
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Figure 4. The relationship between star formation rate and infrared lumi-
nosity in the range 8-1000`m, at redshifts I = 0, 1, 3, 5 calculated using
Equations 22 and 23. As a reference, the Kennicutt’s law (Kennicutt 1998;
Kennicutt & Evans 2012) is shown in solid grey.

temperatures:

log10IRX = log10 ("⇤/"�) � 9.17. (23)

We assume that the spectral energy distribution (SED) of the
infrared galaxies take the form of a modified black body, which
transitions into a power-law Planck Collaboration et al. (2016a):
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where a0 is the frequency where the SED transitions between a mod-
ified black body and a power-law,12 and )d is the dust temperature,
for which we adopt a general redshift and specific star formation
rate (sSFR) dependent relation:

)d = )0 (1 + I)[ + 2ssfrlog10 (sSFR) . (25)

We fix Ud = 2, and estimate the values for Vd, )0, [, 2ssfr. Magnelli
et al. (2014) finds that )0 = 98K, [ = �0.065 and 2ssfr = 6.9
fits their stacked measurements well. However this fit is model
dependent (assuming Vd = 1.5) and is also light weighted as noted
in Schreiber et al. 2018. Wu & Doré (2017) adopts this relation
exactly, whereas Stein et al. (2020) drops the sSFR dependent term
and adopts the values13

)0 = 20.7, U = 0.6.
The luminosity in a given frequency channel is given as

!a = !IR,bolo (" , I) �(a,)d)g(a)Ø
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(26)

where g(a) is the band pass function of a particular channel of
a given experiment. We then take the assigned luminosities and
redshifts to compute their spectral flux density:

(a =
!
a (1+I)

4cj2 (1 + I)
. (27)

12 The exact value of a0 is chosen such that the derivatives match at a0.
13 Note here that sSFR is typically < 1, and therefore the the second term
in Equation 25 is negative, and therefore the best-fit values for )0 and [

appear to be very di�erent.
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LIR =
SFR

KIR + KUV10−IRX(M*)

log10IRX = 1.37 × log10 ( M*

109.63 )
(Bouwens2020)

https://arxiv.org/abs/2009.10727
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2. Apply UniverseMachine (get /SFR). 

3. Apply Kennicutts’ law (get ). 

4. Use empirical fitting relations to obtain 
 and . 
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Mdust Tdust

Mmol

M*
= A + B × (log(1 + z))2 + D × log10(M* − 10.7)

Mdust

M*
=

Mmol

M*
× Zgas

Zgas = − 0.14log10(SFR) + 0.37log10(M*) + 4.82

(Donevski2020)

(Tacconi2020)

(Hunt2016)

Td = Ad ( LIR

Mdust )
1/(4+βd)

βd =
ζd × a

b + c × Td

= Free parameters

https://arxiv.org/abs/2008.09995
https://arxiv.org/abs/2003.06245
https://arxiv.org/abs/1608.05417
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1. Start from Rockstar halos. 

2. Apply UniverseMachine (get /SFR). 

3. Apply Kennicutts’ law (get ). 

4. Use empirical fitting relations to obtain 
 and . 

   
5. Compute SED for individual sources 
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Implementation: CIB

1. Start from Rockstar halos. 

2. Apply UniverseMachine (get /SFR). 

3. Apply Kennicutts’ law (get ). 

4. Use empirical fitting relations to obtain 
 and . 

   
5. Compute SED for individual sources 

6. Generate a CIB power spectrum 
emulator. 

7. Run MCMC to get best-fit parameters 
that match with Lenz2019 CIB maps.
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Implementation: CIB
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1. Start from Rockstar halos. 

2. Apply UniverseMachine (get /SFR). 

3. Apply results from TRINITY (to get 
 and fraction of AGNs). 

4. Do abundance matching with 5GHz 
luminosity function from Tucci2021. 
  

5. Scale the frequency up to match with 
150 GHz. 

6. Scale frequency to 90 and 220 GHz 
using  and  derived from data. 

M*

MBH

α90
150 α220

150

Implementation: Radio

MDPL2-synsky 9

10�5 10�4 10�3 10�2 10�1 100

S5GHz [Jy]

10�3

10�2

10�1

100

101

102

S2.
5

dN
/d

S
[J

y1.
5 ]

MDPL2 all radio
MDPL2 LKf + HKf
MDPL2 HKf
MDPL2 LKf
MDPL2 LKs
MDPL2 HKs

Figure 6. The di�erential number counts of sources at 5 GHz as measured
in MDPL2. The orange solid line represents the sum of LK and HK flat
spectrum sources, which we use to extrapolate to higher frequencies. Con-
tributions from HK and LK sources are shown in dotted/dashed orange lines.
As a reference, the number counts for HK/LK steep-spectrum sources are
shown in dotted/dashed grey lines as well as the sum of all types in solid
grey.

Figures 7 and 8 for comparison of their model with observational
data from Schulze & Wisotzki (2010); Schulze et al. (2015); Kelly
& Shen (2013)).

The next step is to assign luminosities to the halos, for which we
adopt the 5 GHz luminosity function from Tucci & To�olatti (2021).
The luminosity function is statistically modelled based on physical
and phenomenological relations that links the physical properties
of the super massive black hole at their centre, through the funda-
mental plane of black hole activity (Tucci & To�olatti 2021). The
luminosity function is sub-categorized into flat/steep spectrum as
well as low/high-kinetic-mode AGNs (defined as having Eddington
ratios _ = !bolo/!Edd < 0.01 or _ > 0.01 respectively). We match
the total (i.e the sum of flat low-kinetic,steep low-kinetic,flat high-
kinetic,steep high-kinetic) number of halos with the total number of
active black holes predicted by �������, in each redshift shell. Since
no significant correlation is measured between super massive black
hole mass and radio luminosity (Woo & Urry 2002), we randomly
assign a luminosity drawn from the luminosity function to each halo
with an active black hole, and compute their fluxes:

(a =
!a

4c⇡2
!
(I)

(1 + I)1+Ur,5
, (32)

where we adopt U
A ,5 = 0 for flat spectrum sources and U

A ,5 =
0.75 for steep-spectrum sources. The recovered 5 GHz di�erential
number counts are shown in Figure 6.

Next, we translate the 5 GHz fluxes to higher frequencies used
by CMB experiments. To do this, we use the scaling relation:

(150GHz = (5GHz

✓
150 [GHz]
5 [GHz]

◆
U

150
r,5

. (33)

function are outs from the the code �������. See https://github.com/
HaowenZhang/TRINITY.

We consider the low-kinetic and high-kinetic AGN samples sepa-
rately, and furthermore, allow U

150
r,5 to have a Gaussian distribution

with mean `U and spread fU. We attempt to find the best-fit values
of `LK

U
,f

LK
U

, `
HK
U

,f
HK
U

by comparing our model18 using these pa-
rameters with the number counts from Planck Collaboration et al.
(2018)19 and Everett et al. (2020)20 at 143/150 GHz over the flux
density range 6 < (143/150GHz < 15, 000 mJy (given the large un-
certainties in the measured di�erential counts for Planck due to the
small sample size of radio sources at the high flux regime, we ignore
the small bandpass mismatch between the two experiments). This is
achieved by taking a similar approach as described in Section 4.5.1,
but by comparing observed/modelled di�erential number counts in-
stead of ⇠

✓
. Due to the flux limit of Everett et al. (2020), we only

obtain weak constraints on f
LK
U

, which is highly degenerate with
`

LK
U

. Therefore, we adopted a fixed value of fLK
U

= 0.1 and allow
our procedure to constrain `

LK
U

. While the choice of this value is
somewhat arbitrary, we have verified that for values f

LK
U

. 0.15,
we are able to reproduce similar 3=/3B down to ( ⇠ 0.1 mJy, which
is well below the detection threshold of next generation CMB ex-
periments such as CMB-S4 (see e.g. Lagache et al. (2019)).

The constraints that we obtain are shown in Figure 7, and we
find the best-fit values to be `

LK
U

= �0.16, `HK
U

= �0.89,fHK
U

=
0.58. These values are used to construct Gaussian probability distri-
bution %((150GHz |(5GHz) from which we randomly draw for each
halo.

Once the 150 GHz fluxes are assigned to the halos, we fur-
ther assign 95 and 220 GHz fluxes. The relationship between the
fluxes in these channels and the 150 GHz channel are determined
from slopes U95

r,150 and U
220
r,150 as measured in Everett et al. (2020).

We again consider LK and HK samples separately: the slopes for
the LK sources are estimated using the measured fluxes in the
range 6 < (150GHz < 20 mJy and the slopes for the HK sources
are estimated in the range 100 < (150GHz < 1500 mJy. A his-
togram of the slope values are then generated, and a simple multi-
variate Gaussian distributions with ` = �0.9,�0.8,�0.65,�0.75
for U95,LK

150 ,U220,LK
150 ,U95,HK

150 and U
220,LK
150 respectively), with covari-

ance between U
95
150,U220

150 determined from data

⌃LK
95�150,150�220 =


0.20 �0.0086

�0.0086 0.75

�
(34)

⌃HK
95�150,150�220 =


0.062 0.026
0.026 0.077

�
(35)

are used to model the distributions. It can be seen that such a sim-
plistic model is able to provide a reasonable fit (with the exception
of U220,LK

150 ). From this model, we make random draws and assign
the 95 and 220 GHz fluxes to halos.

3.6 Lensing of secondaries and galaxies

We lens all the secondary components, shell by shell, using the
lenisng field integrated up to the source plane shell.

18 In practice, we estimate the % ((150GHz |5GHz) using a
lognormal distribution with location= fU log(a/5GHz) and
scale=(5GHz exp(`U log(a/5GHz)) , and sum the probability density
function to produce an deterministic estimate of the di�erential number
counts 3=/3(150GHz
19 Catalog available at http://pla.esac.esa.int/pla/aio/
product-action?SOURCE_LIST.NAME=COM_PCCS_PCNT_R2.00.fits.
20 Catalog available at https://pole.uchicago.edu/public/data/
everett20/.

MNRAS 000, 1–21 (2020)

https://arxiv.org/abs/2104.04219
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Power spectra
Total 90 GHz map = CMB + kSZ + CIB90GHz + tSZ90GHz + radio90GHz
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Power spectra
Total 90 GHz map = CMB + kSZ + CIB90GHz + tSZ90GHz + radio90GHz
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Example usage of MDPL2

1. Biases in reconstructed CMB lensing map  
2.  Biases in reconstructed tSZ maps  
3.  Multi-tracer delensing forecasting
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Biases in CMB lensing maps

Setup: 5 -  experiment, masking ptsrcs down to 6 mJy, clusters down to μK arcmin 2 × 1014M⊙

Raw CMB lensing spectrum
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Biases in CMB lensing maps

Setup: 5 -  experiment, masking ptsrcs down to 6 mJy, clusters down to μK arcmin 2 × 1014M⊙

Noise biases (“N0” and “N1”)
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Biases in CMB lensing maps

Setup: 5 -  experiment, masking ptsrcs down to 6 mJy, clusters down to μK arcmin 2 × 1014M⊙

Reconstructed CMB lensing 
auto-spectrum (noise debiased)
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Biases in CMB lensing maps
Reconstructed CMB lensing 

auto-spectrum (noise debiased)
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Setup: 5 -  experiment, masking ptsrcs down to 6 mJy, clusters down to μK arcmin 2 × 1014M⊙

Biases in CMB lensing maps
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Figure 28. Upper: Comparison of the auto and first/last cross-spectrum of
the MILCA H-map and that of MDPL2 MILCA H-map. We treat the no-noise
case equivalent as the cross-spectrum case. The black dotted lines denote the
inferred cross-spectrum power from Tanimura et al. (2021). Lower: The no-
noise Compton-H spectrum broken up into various foreground components
obtained by passing the individual foreground component maps through the
MILCA reconstruction pipeline.

focus on the MILCA H-map, and reconstruct the H-map using their
noise realisation (FFP8 simulations), weights and filters.32 We first
verify that the procedure recovers the published Compton-H map by
passing through the second public release (PR2) frequency maps.33.
Once we verify that the reconstruction reproduces the PR2 H-map,
we apply the same procedure to the mock frequency maps from
MDPL2, with and without noise (FFP8) and compare the measured
full auto-spectrum and first/last H-map cross-spectrum. The results
are shown in Figure 28. We find that the resulting total ⇠HH

✓
auto-

spectrum matches the data power spectrum well. For the first/last
cross-spectrum we see a slight deficit in power beyond ✓ > 500
compared to the measured spectrum from the Planck MILCA map.
We have verified that this discrepancy is not due to the correlated
noise contribution, which is unaccounted for in the MDPL2 MILCA
map.34 However we find that part of the discrepancy may be ex-
plained by the strong striping patterns present in the MILCA H-map,
as noted in Tanimura et al. (2021).

We additionally pass through the individual foreground com-
ponents through the map making procedure to identify their con-
tributions to the total H-map power spectrum. We find that at small
scales, the leading foreground component that contributes the most
is the cosmic infrared background which is consistent with the

32 The noise realisations and MILCA weights as well as weight propagation
code is available on the Planck legacy archieve.
33 We specifically use the maps with naming
HFI_SkyMap_${freq}_2048_R2.02_full.fits We find that pass-
ing through PR3 maps through the weights give substantially di�erent
results
34 We have taken the correlated noise power spetcrum from Table 3 of ?.

claims made by other studies . On the other hand, at large scales ,
the signal is dominated by tSZ, followed by CIB and galactic fore-
grounds. The underlying tSZ signal matches is consistent with the
measurements from Tanimura et al. (2021).

For CIB contamination, we attempt to make an analogue by
passing the Lenz et al. (2019) CIB maps through MILCA weights.
Since only 353/545 and 857 GHz channels are available from Lenz
et al. (2019), we extrapolate the 353 GHz map down to 100/143 and
217 GHz. Since there is known non-negligible frequency decorre-
lation, this is only a demonstration of an approximate amplitude of
the CIB contamination. However, since the contribution from these
lower HFI channels are not dominant, we expect this to not a�ect
the results significantly.

As noted in Section 4.1, masking radio sources and IR sources
impacts the resulting⇠HH

✓
, by as much as 10%. This comes from the

fact that there is non-zero correlation between tSZ, CIB and radio
sources. We find that applying the approximate masking threshold
applied in the Planck Collaboration et al. (2016b) we approximately
recover the Compton-H power spectrum in the multipole range 80 <

✓ < 1000. However, we find that the correlation between infrared
point sources and the clusters is higher than what we measure in the
data. – in data, approximately 20% of the detected galaxy clusters in
the mass range 1014.5�1015.0

"� get masked as a result of the point
source mask35, whereas in MDPL2, almost 80% of the clusters get
masked in the same mass range.

5.1.2 Biases in cross-correlations from imperfect component
separation

Simulation products used: mock Planck 100/143/217/353 GHz
maps, mock SPT-SZ 95/150/220 GHz maps, and mock DES-Y1 shear
catalogues.

In this section, we take the frequency weights derived in Bleem et al.
(2021) (shown in Figure 29) and apply them to the MDPL2 mock
SPT-SZ 95/150/220 GHz and Planck 100/143/217/353 GHz maps,
and compare the resulting power spectra of the output Compton-H
maps with the input H-map, as well as measurements from data.

Comparisons of the power spectra of the output Compton-H
maps against the data power spectra for the di�erent component
separation methods (minimum varaince (MV), CMB deprojected,
CMB+CIB deprojected) are shown in Figure 30. Overall, we find
good agreement between the MDPL2 and measured data power
spectra, however with mild excess power at ✓ ⇠ 800, in our simula-
tion, which is particularly visible in the minimum variance recon-
struction.

Next, we apply the frequency weights to individual extragalac-
tic components (CMB, CIB, tSZ, kSZ, radio) separately. First, we
find that the recovered tSZ component recovers the input tSZ signal
well for all three reconstruction types. The amount of contamination
for the other extragalactic components vary between the reconstruc-
tion method. For the minimum variatce reconstruction, we find the
at low ell, there is a non-negligible contribution coming from the
CIB, but in the range 800 < ✓ < 5000, we find a strong contribu-
tion coming from the CMB. At high-✓, teh dominant constribution
becomes the radio sources with a small constribution also coming
from the kSZ e�ect.

For the CMB rejected reconstruction, the contribution from

35

MNRAS 000, 1–37 (2020)

Can also pass frequency maps through Planck MILCA/SPT ymap making pipeline, and 
investigate biases in those maps.

Tanimura2021+

Biases in tSZ maps

We can understand which foreground components are responsible for the various “features” 
in the power spectrum.

https://arxiv.org/abs/2110.08880
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Figure 28. Upper: Comparison of the auto and first/last cross-spectrum of
the MILCA H-map and that of MDPL2 MILCA H-map. We treat the no-noise
case equivalent as the cross-spectrum case. The black dotted lines denote the
inferred cross-spectrum power from Tanimura et al. (2021). Lower: The no-
noise Compton-H spectrum broken up into various foreground components
obtained by passing the individual foreground component maps through the
MILCA reconstruction pipeline.

focus on the MILCA H-map, and reconstruct the H-map using their
noise realisation (FFP8 simulations), weights and filters.32 We first
verify that the procedure recovers the published Compton-H map by
passing through the second public release (PR2) frequency maps.33.
Once we verify that the reconstruction reproduces the PR2 H-map,
we apply the same procedure to the mock frequency maps from
MDPL2, with and without noise (FFP8) and compare the measured
full auto-spectrum and first/last H-map cross-spectrum. The results
are shown in Figure 28. We find that the resulting total ⇠HH

✓
auto-

spectrum matches the data power spectrum well. For the first/last
cross-spectrum we see a slight deficit in power beyond ✓ > 500
compared to the measured spectrum from the Planck MILCA map.
We have verified that this discrepancy is not due to the correlated
noise contribution, which is unaccounted for in the MDPL2 MILCA
map.34 However we find that part of the discrepancy may be ex-
plained by the strong striping patterns present in the MILCA H-map,
as noted in Tanimura et al. (2021).

We additionally pass through the individual foreground com-
ponents through the map making procedure to identify their con-
tributions to the total H-map power spectrum. We find that at small
scales, the leading foreground component that contributes the most
is the cosmic infrared background which is consistent with the

32 The noise realisations and MILCA weights as well as weight propagation
code is available on the Planck legacy archieve.
33 We specifically use the maps with naming
HFI_SkyMap_${freq}_2048_R2.02_full.fits We find that pass-
ing through PR3 maps through the weights give substantially di�erent
results
34 We have taken the correlated noise power spetcrum from Table 3 of ?.

claims made by other studies . On the other hand, at large scales ,
the signal is dominated by tSZ, followed by CIB and galactic fore-
grounds. The underlying tSZ signal matches is consistent with the
measurements from Tanimura et al. (2021).

For CIB contamination, we attempt to make an analogue by
passing the Lenz et al. (2019) CIB maps through MILCA weights.
Since only 353/545 and 857 GHz channels are available from Lenz
et al. (2019), we extrapolate the 353 GHz map down to 100/143 and
217 GHz. Since there is known non-negligible frequency decorre-
lation, this is only a demonstration of an approximate amplitude of
the CIB contamination. However, since the contribution from these
lower HFI channels are not dominant, we expect this to not a�ect
the results significantly.

As noted in Section 4.1, masking radio sources and IR sources
impacts the resulting⇠HH

✓
, by as much as 10%. This comes from the

fact that there is non-zero correlation between tSZ, CIB and radio
sources. We find that applying the approximate masking threshold
applied in the Planck Collaboration et al. (2016b) we approximately
recover the Compton-H power spectrum in the multipole range 80 <

✓ < 1000. However, we find that the correlation between infrared
point sources and the clusters is higher than what we measure in the
data. – in data, approximately 20% of the detected galaxy clusters in
the mass range 1014.5�1015.0

"� get masked as a result of the point
source mask35, whereas in MDPL2, almost 80% of the clusters get
masked in the same mass range.

5.1.2 Biases in cross-correlations from imperfect component
separation

Simulation products used: mock Planck 100/143/217/353 GHz
maps, mock SPT-SZ 95/150/220 GHz maps, and mock DES-Y1 shear
catalogues.

In this section, we take the frequency weights derived in Bleem et al.
(2021) (shown in Figure 29) and apply them to the MDPL2 mock
SPT-SZ 95/150/220 GHz and Planck 100/143/217/353 GHz maps,
and compare the resulting power spectra of the output Compton-H
maps with the input H-map, as well as measurements from data.

Comparisons of the power spectra of the output Compton-H
maps against the data power spectra for the di�erent component
separation methods (minimum varaince (MV), CMB deprojected,
CMB+CIB deprojected) are shown in Figure 30. Overall, we find
good agreement between the MDPL2 and measured data power
spectra, however with mild excess power at ✓ ⇠ 800, in our simula-
tion, which is particularly visible in the minimum variance recon-
struction.

Next, we apply the frequency weights to individual extragalac-
tic components (CMB, CIB, tSZ, kSZ, radio) separately. First, we
find that the recovered tSZ component recovers the input tSZ signal
well for all three reconstruction types. The amount of contamination
for the other extragalactic components vary between the reconstruc-
tion method. For the minimum variatce reconstruction, we find the
at low ell, there is a non-negligible contribution coming from the
CIB, but in the range 800 < ✓ < 5000, we find a strong contribu-
tion coming from the CMB. At high-✓, teh dominant constribution
becomes the radio sources with a small constribution also coming
from the kSZ e�ect.

For the CMB rejected reconstruction, the contribution from
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Can also pass frequency maps through Planck MILCA/SPT ymap making pipeline, and 
investigate biases in those maps.

Biases in tSZ maps

We can understand which foreground components are responsible for the various “features” 
in the power spectrum.

Measured total tSZ spectrum
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Pe(r) = P* × p(r/r500c)

p(x) = (cPx)−γ[1 + (cPx)α]
γ − β

α

P* = P0 (1.65 eV cm−3) h8/3
70 ( h70(1 − bH)M500c

3 × 1014M⊙ )
0.79

We can identify biases in cross-
correlations and estimate the bias using 
the combination of data simulations. 

Specially for MILCA, we find that there is 
a lot of CIB contamination in tSZ  
galaxies correlation.

×

Preli
minary

biased

debiased

Biases in tSZ maps
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Multi-tracer delensing forecasting
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One of the key science for Stage-3 and Stage-4 CMB experiments is to constraint r, and we want 
maximize the delensing efficiency by throwing every possible data to improve our estimate of the 
lensing potential.  Combine internal lensing + CIB + LSS 
    

→
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Part II summary

• MDPL2 synthetic sky simulation is one of the few simulations that have both CMB and LSS 
simulation products, tested to the level that is usable for real data analyses. 

• The modelling is calibrated against existing observational data and external hydrodynamical 
simulations. 

• It was built with a focus on accurate modelling of the CMB foregrounds, for the purpose of 
assessing biases in auto/cross-correlation measurements of SZ/lensing. 

• MDPL2 is already being used for several analyses e.g. 6x2pt, galaxies  tSZ, shear  tSZ, 
pairwise kSZ, multi-tracer delensing forecasts etc. 

• Future/On-going works: 

• Implementation of more realistic LSST galaxies 
• Baryonification 
• Learning from MDPL2 and pasting secondaries to cheaper mocks 
• LIM 
• Other observables (X-ray, clusters, patchy kSZ etc.)

× ×

End


