Anisotropic assembly bias in theory, simulations and data

Andrej Obuljen

University of Waterloo, Waterloo Centre for Astrophysics

with Will Percival & Neal Dalal

LBL Research Progress Meeting, October 15th, 2020

[arXiv:1906.11823](https://arxiv.org/abs/1906.11823) [arXiv:2004.07240](https://arxiv.org/abs/2004.07240)

Outline

• Introduction

- *•* Anisotropic halo assembly bias in simulations
- *•* Anisotropic galaxy assembly bias in BOSS sample
- *•* Consequences (for DESI) & Summary

• We have a very successful ΛCDM model describing the Universe

- *•* We have a very successful ΛCDM model describing the Universe
- *•* Cosmological information contained in different observables

- *•* We have a very successful ΛCDM model describing the Universe
- *•* Cosmological information contained in different observables
- *•* Inhomogenities dominant source of information, mainly through 2-point statistics of fluctuations

- *•* We have a very successful ΛCDM model describing the Universe
- *•* Cosmological information contained in different observables
- *•* Inhomogenities dominant source of information, mainly through 2-point statistics of fluctuations
- CMB measurements still dominate the constraints on cosmological parameters

- *•* We have a very successful ΛCDM model describing the Universe
- *•* Cosmological information contained in different observables
- *•* Inhomogenities dominant source of information, mainly through 2-point statistics of fluctuations
- *•* CMB measurements still dominate the constraints on cosmological parameters
- *•* But Large-scale Structure is 3D expected to ultimately have more constraining power

- *•* We have a very successful ΛCDM model describing the Universe
- *•* Cosmological information contained in different observables
- *•* Inhomogenities dominant source of information, mainly through 2-point statistics of fluctuations
- *•* CMB measurements still dominate the constraints on cosmological parameters
- *•* But Large-scale Structure is 3D expected to ultimately have more constraining power
- *•* Upcoming galaxy redshift surveys (DESI, Euclid) will reach unprecedented precision

Large-scale structure

- *•* Overdensity field: $\delta_m(\mathbf{x}) = \rho_m(\mathbf{x})/\bar{\rho}_m - 1$
- *•* Power spectrum: $P_m(\mathbf{k}_1, \mathbf{k}_2) \propto \langle \delta_m(\mathbf{k}_1) \delta_m(\mathbf{k}_2) \rangle$

SDSS

Large-scale structure

- *•* Overdensity field: $\delta_m(\mathbf{x}) = \rho_m(\mathbf{x})/\bar{\rho}_m - 1$
- *•* Power spectrum: $\ket{P_m(\mathbf{k_1},\mathbf{k_2}) \propto \langle \delta_m(\mathbf{k_1}) \delta_m(\mathbf{k_2}) \rangle}$
- *•* Cosmological Principle: *Pm*(*k*)

Planck, 2018

Large-scale structure

- *•* Overdensity field: $\delta_m(\mathbf{x}) = \rho_m(\mathbf{x})/\bar{\rho}_m - 1$
- *•* Power spectrum: $\overline{P_{m}(\mathbf{k_{1}},\mathbf{k_{2}})} \propto \langle \delta_{m}(\mathbf{k_{1}}) \delta_{m}(\mathbf{k_{2}}) \rangle$
- *•* Cosmological Principle: *Pm*(*k*)
- *•* However we neither observe dark matter nor real-space positions x

Planck, 2018

Galaxies, halos, voids, 21cm, Ly*α* forest ... all biased tracers of matter in real space, observed in redshift-space

•
$$
\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k)
$$

SDSS

Galaxies, halos, voids, 21cm, Ly*α* forest ... all biased tracers of matter in real space, observed in redshift-space

- $\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k)$
- *• b^g* linear scalar bias of e.g. galaxies

Galaxies, halos, voids, 21cm, Ly*α* forest ... all biased tracers of matter in real space, observed in redshift-space

- $\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k)$
- *• b^g* linear scalar bias of e.g. galaxies
- *• b^g* depends on halo mass & redshift:
	- massive objects more biased
	- objects more biased earlier

SDSS

Galaxies, halos, voids, 21cm, Ly*α* forest ... all biased tracers of matter in real space, observed in redshift-space

- $\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k)$
- *• b^g* linear scalar bias of e.g. galaxies
- *• b^g* depends on halo mass & redshift:
	- massive objects more biased
	- objects more biased earlier
- *•* In redshift-space, linear theory for matter:

 $\delta_m^s(k,\mu) = (1 + f\mu^2) \, \delta_m(k), \mu = k_{\parallel}/k$

SDSS

Galaxies, halos, voids, 21cm, Ly*α* forest ... all biased tracers of matter in real space, observed in redshift-space

- $\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k)$
- *• b^g* linear scalar bias of e.g. galaxies
- *• b^g* depends on halo mass & redshift:
	- massive objects more biased
	- objects more biased earlier
- *•* In redshift-space, linear theory for matter:

 $\delta_m^s(k,\mu) = (1 + f\mu^2) \, \delta_m(k), \mu = k_{\parallel}/k$

• Equivalence principle =*⇒* no velocity bias

 $\delta_g^s(k,\mu) = (b_g + f\mu^2)\delta_m(k)$

SDSS

Galaxy power spectrum in redshift-space

- Linear theory: $P_g^s(k,\mu) = (b_g + f\mu^2)^2 P_m(k)$
- *•* Use Legendre expansion into multipoles:

$$
P_{\ell}(k) = \frac{2\ell+1}{2} \int_{-1}^{1} P_{g}^{s}(k, \mu) \mathcal{L}_{\ell}(\mu) d\mu
$$

$$
P_{0}(k) = \left(b_{g}^{2} + \frac{2}{3}fb_{g} + \frac{1}{5}f^{2}\right) P_{m}(k)
$$

$$
P_{2}(k) = \left(\frac{4}{3}b_{g}f + \frac{4}{7}f^{2}\right) P_{m}(k)
$$

- Measuring $P_0 \& P_2$ gives $b_q \& f$
- Note quadrupole $P_2 \propto f$
- In real-space $P_2 = 0$

Galaxy power spectrum in redshift-space

- Linear theory: $P_g^s(k,\mu) = (b_g + f\mu^2)^2 P_m(k)$
- *•* Use Legendre expansion into multipoles:

$$
P_{\ell}(k) = \frac{2\ell+1}{2} \int_{-1}^{1} P_g^s(k, \mu) \mathcal{L}_{\ell}(\mu) d\mu
$$

$$
P_0(k) = \left(b_g^2 + \frac{2}{3}fb_g + \frac{1}{5}f^2\right) P_m(k)
$$

$$
P_2(k) = \left(\frac{4}{3}b_g f + \frac{4}{7}f^2\right) P_m(k)
$$

- Measuring $P_0 \& P_2$ gives $b_q \& f$
- Note quadrupole $P_2 \propto f$
- In real-space $P_2 = 0$

Alam+2016

Growth rate *f*

One of the key parameters

- \bullet $f \equiv \frac{d \ln D(a)}{d \ln a}$
- GR prediction: $f = \Omega_{\rm m}(z)^{0.55}$
- *•* Important for:
	- Testing Gravity
	- Constraining neutrino masses
	- Testing dark energy models
- *•* Currently *∼* 5 *−* 10%
- *•* Future surveys (DESI, Euclid) expected to reach $\sim 1-5\%$ precision Planck, 2018

Assembly bias

Bias depends on other *scalar* properties, for fixed halo mass and redshift

- *•* Formation history
- *•* Age
- *•* Spin
- *•* Concentration
- *•* Shape ...

Wechsler+, 2018

Assembly bias

Bias depends on other *scalar* properties, for fixed halo mass and redshift

- *•* Formation history
- *•* Age
- *•* Spin
- *•* Concentration
- *•* Shape ...

Wechsler+, 2018

Detected in simulations, no convincing evidence in data

• At the linear level in δ_m we usually assume: $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k)$

- At the linear level in δ_m we usually assume: $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k)$
- There's another term linear in δ_m traceless part of the tidal field:

 $s_{ij}(\mathbf{x}) = (\nabla_i \nabla_j \nabla^{-2} - \delta_{ij}/3) \delta_m(\mathbf{x}) \iff s_{ij}(\mathbf{k}) = (k_i k_j / k^2 - \delta_{ij}/3) \delta_m(\mathbf{k})$

- At the linear level in δ_m we usually assume: $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k)$
- There's another term linear in δ_m traceless part of the tidal field:

 $s_{ij}(\mathbf{x}) = (\nabla_i \nabla_j \nabla^{-2} - \delta_{ij}/3) \delta_m(\mathbf{x}) \iff s_{ij}(\mathbf{k}) = (k_i k_j / k^2 - \delta_{ij}/3) \delta_m(\mathbf{k})$ $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k) + b_{ij}s_{ij}(\mathbf{k})$

- At the linear level in δ_m we usually assume: $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k)$
- There's another term linear in δ_m traceless part of the tidal field:

 $s_{ij}(\mathbf{x}) = (\nabla_i \nabla_j \nabla^{-2} - \delta_{ij}/3) \delta_m(\mathbf{x}) \iff s_{ij}(\mathbf{k}) = (k_i k_j / k^2 - \delta_{ij}/3) \delta_m(\mathbf{k})$ $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k) + b_{ij}s_{ij}(\mathbf{k})$

- *•* Only non-scalar properties can correlate with tidal field
	- projected sizes, velocity dispersion & angular momentum

How correlated are halos & tidal field?

We use 1000 Quijote N-body sims (Villaescusa-Navarro+, 2019) to measure cross-correlations

- At the linear level in δ_m we usually assume: $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k)$
- *•* There's another term linear in *δ^m* traceless part of the tidal field:

 $s_{ij}(\mathbf{x}) = (\nabla_i \nabla_j \nabla^{-2} - \delta_{ij}/3) \delta_m(\mathbf{x}) \iff s_{ij}(\mathbf{k}) = (k_i k_j / k^2 - \delta_{ij}/3) \delta_m(\mathbf{k})$

 $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k) + b_{ij}s_{ij}(\mathbf{k})$

• Only non-scalar properties can correlate with tidal field

– projected sizes, velocity dispersion & angular momentum

- At the linear level in δ_m we usually assume: $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k)$
- *•* There's another term linear in *δ^m* traceless part of the tidal field:

 $s_{ij}(\mathbf{x}) = (\nabla_i \nabla_j \nabla^{-2} - \delta_{ij}/3) \delta_m(\mathbf{x}) \iff s_{ij}(\mathbf{k}) = (k_i k_j / k^2 - \delta_{ij}/3) \delta_m(\mathbf{k})$

 $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k) + b_{ij}s_{ij}(\mathbf{k})$

- *•* Only non-scalar properties can correlate with tidal field
	- projected sizes, velocity dispersion & angular momentum
- *•* Azimuthal symmetry & *b^q ≡ bzz*

$$
\delta_g(k,\mu) = (b_g + f\mu^2)\delta_m(k) + b_{zz}(\mu^2 - 1/3)\delta_m(k) = (b_g - b_q/3 + (f + b_q)\mu^2)\delta_m(k)
$$

- At the linear level in δ_m we usually assume: $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k)$
- *•* There's another term linear in *δ^m* traceless part of the tidal field:

 $s_{ij}(\mathbf{x}) = (\nabla_i \nabla_j \nabla^{-2} - \delta_{ij}/3) \delta_m(\mathbf{x}) \iff s_{ij}(\mathbf{k}) = (k_i k_j / k^2 - \delta_{ij}/3) \delta_m(\mathbf{k})$

 $\delta_g(\mathbf{k}) = (b_g + f\mu^2)\delta_m(k) + b_{ij}s_{ij}(\mathbf{k})$

- *•* Only non-scalar properties can correlate with tidal field
	- projected sizes, velocity dispersion & angular momentum
- *•* Azimuthal symmetry & *b^q ≡ bzz*

 $\delta_g(k,\mu) = (b_g + f\mu^2)\delta_m(k) + b_{zz}(\mu^2 - 1/3)\delta_m(k)$ $= (b_g - b_q/3 + (f + b_q)\mu^2) \delta_m(k)$

• First pointed out by Hirata (2009)

• Parameter *b^q* is the **anisotropic assembly bias**

- *•* Parameter *b^q* is the **anisotropic assembly bias**
- Source of anisotropy in the real space power spectrum

- *•* Parameter *b^q* is the **anisotropic assembly bias**
- *•* Source of anisotropy in the real space power spectrum
- *•* Additional source of anisotropy in the redshift-space

- *•* Parameter *b^q* is the **anisotropic assembly bias**
- *•* Source of anisotropy in the real space power spectrum
- *•* Additional source of anisotropy in the redshift-space
- *•* Note *b^q* is perfectly degenerate with *f* !

- *•* Parameter *b^q* is the **anisotropic assembly bias**
- *•* Source of anisotropy in the real space power spectrum
- *•* Additional source of anisotropy in the redshift-space
- *•* Note *b^q* is perfectly degenerate with *f* !
- $b_q = 0$ if:
	- Selection independent of halo orientation, e.g. projected size, velocity dispersion, angular momentum
	- *or* if observed tracer and host halo randomly misaligned

Halo selection based on tensor properties

Selection on radial halo extent & velocity dispersion σ_{1D} in **real space**

Halo selection based on tensor properties

Selection on radial halo extent & velocity dispersion σ_{1D} in **real space**

- Real-space $P_2 = f = 0$
- $P_2 \neq 0 \rightarrow b_q \neq 0$

Halo selection based on tensor properties

Selection on radial halo extent & velocity dispersion *σ*1D in **real space**

- Real-space $P_2 = f = 0$
- $P_2 \neq 0 \rightarrow b_q \neq 0$

AO+2019

Halo selection based on tensor properties

Selection on radial halo extent & velocity dispersion *σ*1D in **real space**

- Real-space $P_2 = f = 0$
- $P_2 \neq 0 \rightarrow b_q \neq 0$
- *•* Halos: ∆*b^q ≈* 1 *−* 2
- *•* Redshift-space *f ≈* 0*.*7

What about real galaxies?

When split on orientation dependent quantities, do galaxies show different clustering strength?

What about real galaxies?

When split on orientation dependent quantities, do galaxies show different clustering strength?

- *•* Baryon Oscillation Spectroscopic Survey **BOSS** DR12 galaxy sample
- *• [∼]* ¹⁰⁶ galaxy redshifts
- $0.15 < z < 0.7$
- *•* Luminous red galaxies, *b^g ∼* 2
- *•* Ellipticals, *^M^h [∼]* ¹⁰¹³*M⊙*/*^h*
- *•* Galaxy samples
	- $-$ LOWZ $(0.15 < z < 0.43)$
	- $-$ CMASS (0.43 $<$ z $<$ 0.7)

Main idea – split on orientation $(\sigma_{*}) \rightarrow$ look for differences in anisotropy (Δb_{q})

• Subsamples matching *n*(*z*) have matching *f*

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*

Main idea – split on orientation (σ _{*∗*}) \rightarrow look for differences in anisotropy (Δb _{*a*})

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$

Main idea – split on orientation (σ _{*∗*}) \rightarrow look for differences in anisotropy (Δb _{*a*})

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* Need orientation dependent gal. property

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* Need orientation dependent gal. property
- *•* Galaxy Properties from Portsmouth Group
	- velocity dispersion *σ[⋆]* (1D)
	- stellar mass *M[⋆]*

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* Galaxy Properties from Portsmouth Group
	- velocity dispersion *σ[⋆]* (1D)
	- $-$ stellar mass $M₊$

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* Galaxy Properties from Portsmouth Group
	- velocity dispersion *σ[⋆]* (1D)
	- $-$ stellar mass $M₊$
- *•* Split on *σ[⋆]* = split on orientation & galaxy $\textsf{mass} \left(\sigma_\star^2 \propto M_\star \right)$

- *•* Subsamples matching *n*(*z*) have matching *f*
- Subsamples can have different b_q & b_q
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* Galaxy Properties from Portsmouth Group
	- velocity dispersion *σ[⋆]* (1D)
	- $-$ stellar mass $M₊$
- *•* Split on *σ[⋆]* = split on orientation & galaxy bias $b_q(M_\star) \to$ different P_0 & P_2

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* Galaxy Properties from Portsmouth Group
	- velocity dispersion *σ[⋆]* (1D)
	- $-$ stellar mass $M₊$
- *•* Split on *σ[⋆]* = split on orientation & galaxy bias $b_q(M_\star) \to$ different P_0 & P_2
- Use M_{\star} to remove mass (b_a) dependence

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* Galaxy Properties from Portsmouth Group
	- velocity dispersion *σ[⋆]* (1D)
	- $-$ stellar mass $M₊$
- *•* Split on *σ[⋆]* = split on orientation & galaxy bias $b_q(M_\star) \to$ different P_0 & P_2
- *•* Make subsamples with either
	- $-$ high M_{\star} , low σ_{\star} *or*
	- $-$ low M_{\star} , high σ_{\star}

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* Galaxy Properties from Portsmouth Group
	- velocity dispersion *σ[⋆]* (1D)
	- $-$ stellar mass $M₊$
- *•* Split on *σ[⋆]* = split on orientation & galaxy bias $b_q(M_\star) \to$ different P_0 & P_2
- *•* Make subsamples with either
	- $-$ high M_{\star} , low σ_{\star} *or*
	- $-$ low M_{\star} , high σ_{\star}

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- How do we match $n(z)$?
	- Need to account for *z*-evolution
	- Work with percentiles
	- Compute percentiles in 30 *z*-bins
	- Split on percentiles in each *z*-bin
	- \rightarrow **=** matching $n(z)$

Main idea – split on orientation (σ _{*∗*}) \rightarrow look for differences in anisotropy (Δb _{*a*})

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- How do we match monopoles?

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- How do we match monopoles? – Grid of 25 (σ_{\star} , M_{\star}) subsamples

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- How do we match monopoles?
	- Grid of 25 (σ_{\star} , M_{\star}) subsamples
	- Measure mean amplitude

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- How do we match monopoles?
	- Grid of 25 (σ_{\star} , M_{\star}) subsamples
	- Measure mean amplitude
	- $-$ Low $(\sigma_{\star}, M_{\star})$ low amplitude
	- $-$ High $(\sigma_{\star}, M_{\star})$ high amplitude

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- How do we match monopoles?
	- Grid of 25 (σ_{\star} , M_{\star}) subsamples
	- Measure mean amplitude
	- But we want matching amplitude!

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- How do we match monopoles?
	- Finally select samples with:
	- $-$ high M_{\star} , low σ_{\star} &
	- $-$ low M_{\star} , high σ_{\star}

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- *•* How do we match monopoles?
	- Finally select samples with:
	- $-$ high M_{\star} , low σ_{\star} &
	- $-$ low M_{\star} , high σ_{\star}

Main idea – split on orientation (σ _{*∗*}) \rightarrow look for differences in anisotropy (Δb _{*a*})

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$

• What about quadrupoles?

Main idea – split on orientation (σ _{*∗*}) \rightarrow look for differences in anisotropy (Δb _{*a*})

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$

• What about quadrupoles?

Main idea – split on orientation (σ _{*∗*}) \rightarrow look for differences in anisotropy (Δb _{*a*})

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$

• Match $P_0 \& n(z) \rightarrow$ match P_2

- *•* Subsamples matching *n*(*z*) have matching *f*
- *•* Subsamples can have different *b^g* & *b^q*
- *•* Find subsamples matching *P*⁰ & *n*(*z*)!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$

- Match P_0 & $n(z) \rightarrow$ match P_2
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$

Results – CMASS NGC

AO+2020

Results – LOWZ NGC

AO+2020

Detection significance

- *•* Use mock galaxy catalogs
- *•* Split each mock in two random subsamples
- *•* Cross-correlate each subsample with full mock
- Minimize $\Delta P_{\ell} = P_{\ell}^{\text{sub,1}} a_{\ell} P_{\ell}^{\text{sub,2}}$
- Matching monopoles $a_0 \approx 1$
	- $-$ within 1σ at all scales
- Different quadrupoles $a_2 \neq 1$
	- many *σ*'s away!
- *•* $\implies \Delta b_q \neq 0$ between subsamples

Detection significance

- *•* Use mock galaxy catalogs
- *•* Split each mock in two random subsamples
- *•* Cross-correlate each subsample with full mock
- Minimize $\Delta P_{\ell} = P_{\ell}^{\text{sub,1}} a_{\ell} P_{\ell}^{\text{sub,2}}$
- Matching monopoles $a_0 \approx 1$
	- $-$ within 1σ at all scales
- Different quadrupoles $a_2 \neq 1$
	- many *σ*'s away!
- *•* $\implies \Delta b_q \neq 0$ between subsamples

Combined detection significance

 5σ using $k_{\text{max}} \sim 0.15 h \text{ Mpc}^{-1}$

Discussion

• We present significant evidence of AB in **BOSS** galaxies

Discussion

- *•* We present significant evidence of AB in BOSS galaxies
- We show clustering of galaxies depends on local properties other than halo mass
- We present significant evidence of AB in BOSS galaxies
- We show clustering of galaxies depends on local properties other than halo mass
- *•* Our detection is the first to exceed the level of 5*σ*

- *•* We present significant evidence of AB in BOSS galaxies
- We show clustering of galaxies depends on local properties other than halo mass
- *•* Our detection is the first to exceed the level of 5*σ*
- *•* We only measure ∆*b^q* of subsamples, not the full sample *bq*!

- *•* We present significant evidence of AB in BOSS galaxies
- We show clustering of galaxies depends on local properties other than halo mass
- *•* Our detection is the first to exceed the level of 5*σ*
- *•* We only measure ∆*b^q* of subsamples, not the full sample *bq*!
- *•* For BOSS galaxies we find subsamples with ∆*b^q ∼* 0*.*1 *−* 0*.*2

- *•* We present significant evidence of AB in BOSS galaxies
- *•* We show clustering of galaxies depends on local properties other than halo mass
- *•* Our detection is the first to exceed the level of 5*σ*
- *•* We only measure ∆*b^q* of subsamples, not the full sample *bq*!
- *•* For BOSS galaxies we find subsamples with ∆*b^q ∼* 0*.*1 *−* 0*.*2
- *•* For halos in sims we found subsamples with ∆*b^q ∼* 1 *−* 2

- *•* We present significant evidence of AB in BOSS galaxies
- We show clustering of galaxies depends on local properties other than halo mass
- *•* Our detection is the first to exceed the level of 5*σ*
- *•* We only measure ∆*b^q* of subsamples, not the full sample *bq*!
- *•* For BOSS galaxies we find subsamples with ∆*b^q ∼* 0*.*1 *−* 0*.*2
- *•* For halos in sims we found subsamples with ∆*b^q ∼* 1 *−* 2
- *•* Misalignment of galaxies and halos decreases the signal

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

• DESI Emission Line Galaxies (ELGs)

– Fiber magnitude vs. model magnitudes

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

- Fiber magnitude vs. model magnitudes
- Faint galaxies near the detection threshold could be impacted more

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

- Fiber magnitude vs. model magnitudes
- Faint galaxies near the detection threshold could be impacted more
- Faint galaxies are also more numerous!

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

- Fiber magnitude vs. model magnitudes
- Faint galaxies near the detection threshold could be impacted more
- Faint galaxies are also more numerous!
- ELGs contain dust =*⇒* more face-on than edge on galaxies

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

- Fiber magnitude vs. model magnitudes
- Faint galaxies near the detection threshold could be impacted more
- Faint galaxies are also more numerous!
- ELGs contain dust =*⇒* more face-on than edge on galaxies
- However, ELGs aligned weaker than LRGs

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

- Fiber magnitude vs. model magnitudes
- Faint galaxies near the detection threshold could be impacted more
- Faint galaxies are also more numerous!
- ELGs contain dust =*⇒* more face-on than edge on galaxies
- However, ELGs aligned weaker than LRGs
- We are currently looking into ELG targets to see how big selection effects are

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

- Fiber magnitude vs. model magnitudes
- Faint galaxies near the detection threshold could be impacted more
- Faint galaxies are also more numerous!
- ELGs contain dust =*⇒* more face-on than edge on galaxies
- However, ELGs aligned weaker than LRGs
- We are currently looking into ELG targets to see how big selection effects are
- *•* DESI Luminous Red Galaxies (LRGs)

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

- Fiber magnitude vs. model magnitudes
- Faint galaxies near the detection threshold could be impacted more
- Faint galaxies are also more numerous!
- ELGs contain dust =*⇒* more face-on than edge on galaxies
- However, ELGs aligned weaker than LRGs
- We are currently looking into ELG targets to see how big selection effects are
- *•* DESI Luminous Red Galaxies (LRGs)
	- Similar to BOSS, better measurement of AB

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

- Fiber magnitude vs. model magnitudes
- Faint galaxies near the detection threshold could be impacted more
- Faint galaxies are also more numerous!
- ELGs contain dust =*⇒* more face-on than edge on galaxies
- However, ELGs aligned weaker than LRGs
- We are currently looking into ELG targets to see how big selection effects are
- *•* DESI Luminous Red Galaxies (LRGs)
	- Similar to BOSS, better measurement of AB
	- Are LRGs dust free?

• Groups/clusters found in redshift-space

• Groups/clusters found in redshift-space

– ... in simulations exhibit strong AB signal in their clustering

• Groups/clusters found in redshift-space

– ... in simulations exhibit strong AB signal in their clustering

• Could be an issue for RSD with 21cm Intensity Mapping

• Groups/clusters found in redshift-space

– ... in simulations exhibit strong AB signal in their clustering

• Could be an issue for RSD with 21cm Intensity Mapping

– ... due to HI self-absorption, provided HI aligned with halos

• Groups/clusters found in redshift-space

– ... in simulations exhibit strong AB signal in their clustering

• Could be an issue for RSD with 21cm Intensity Mapping

– ... due to HI self-absorption, provided HI aligned with halos

• ...

Summary

- *•* Non-scalar halo properties are correlated with large-scale tidal fields
- *•* Orientation dep. selection effects and tidal alignment of halos/galaxies: $\delta_g^s = (b_g - b_q/3 + (f + b_q)\mu^2) \delta_m$
- *•* We find terms like *b^q* present in simulations and BOSS galaxies
	- $-$ Split galaxies based on line of sight velocity dispersion σ_{+} and M_{+}
	- $-$ Simple test − subsamples matching P_0 \implies matching P_2
- Galaxy clustering depends on other local properties, not just halo mass:
- *•* **First detection of galaxy assembly bias to exceed** 5*σ***!**
- *•* **Problem for RSD since** *b^q* **completely degenerate with** *f***!**
- **•** LRGs, ELGs, groups/clusters, 21cm, voids, etc. selection effects?

• We find no signal when splitting on projected physical size R_0 & M_*

- *•* We find no signal when splitting on projected physical size R_0 & $M₊$
	- $-$ Larger fractional scatter of R_0 compared to σ_*

- *•* We find no signal when splitting on projected physical size R_0 & $M₊$
	- $-$ Larger fractional scatter of R_0 compared to σ_*
- *•* Previous works used Fundamental Plane (FP):

$$
\frac{I_0^b \sigma_\star^a}{R_0} \sim \text{const.}
$$

with I_0 surface brightness

- We find no signal when splitting on projected physical size R_0 & $M₊$
	- $-$ Larger fractional scatter of R_0 compared to σ_*
- *•* Previous works used Fundamental Plane (FP):

$$
\frac{I_0^b \sigma_\star^a}{R_0} \sim \text{const.}
$$

with I_0 surface brightness

 $-$ Martens+18 marginal signal with (I_0, R_0)

- *•* We find no signal when splitting on projected physical size R_0 & $M₊$
	- $-$ Larger fractional scatter of R_0 compared to σ_*
- *•* Previous works used Fundamental Plane (FP):

$$
\frac{I_0^b \sigma_\star^a}{R_0} \sim \text{const.}
$$

with I_0 surface brightness

- $-$ Martens+18 marginal signal with (I_0, R_0)
- Singh+20 no signal with full FP

- *•* We find no signal when splitting on projected physical size R_0 & $M₊$
	- $-$ Larger fractional scatter of R_0 compared to σ_*
- *•* Previous works used Fundamental Plane (FP):

$$
\frac{I_0^b \sigma_\star^a}{R_0} \sim \text{const.}
$$

with I_0 surface brightness

- $-$ Martens+18 marginal signal with (I_0, R_0)
- Singh+20 no signal with full FP
- *•* We do FP analysis with (*a, b*) grid

- *•* We find no signal when splitting on projected physical size R_0 & $M₊$
	- $-$ Larger fractional scatter of R_0 compared to σ_*
- *•* Previous works used Fundamental Plane (FP):

$$
\frac{I_0^b \sigma_\star^a}{R_0} \sim \text{const.}
$$

with I_0 surface brightness

- $-$ Martens+18 marginal signal with (I_0, R_0)
- Singh+20 no signal with full FP
- *•* We do FP analysis with (*a, b*) grid
- Kaiser model for multipoles assuming $b_q = 0$

AO+2020

- *•* We find no signal when splitting on projected physical size R_0 & $M₊$
	- $-$ Larger fractional scatter of R_0 compared to σ_*
- **•** Previous works used Fundamental Plane (FP):

$$
\frac{I_0^b \sigma_\star^a}{R_0} \sim \text{const.}
$$

with I_0 surface brightness

- $-$ Martens+18 marginal signal with (I_0, R_0)
- Singh+20 no signal with full FP
- *•* We do FP analysis with (*a, b*) grid
- Kaiser model for multipoles assuming $b_q = 0$
- **Results on AB very sensitive to** (a, b) values

AO+2020

- *•* We find no signal when splitting on projected physical size R_0 & $M₊$
	- $-$ Larger fractional scatter of R_0 compared to σ_*
- *•* Previous works used Fundamental Plane (FP):

$$
\frac{I_0^b \sigma_\star^a}{R_0} \sim \text{const.}
$$

with I_0 surface brightness

- $-$ Martens+18 marginal signal with (I_0, R_0)
- Singh+20 no signal with full FP
- *•* We do FP analysis with (*a, b*) grid
- Kaiser model for multipoles assuming $b_q = 0$
- **Results on AB very sensitive to** (a, b) values
	- Perhaps explaining previous results...

Summary

- *•* Non-scalar halo properties are correlated with large-scale tidal fields
- *•* Orientation dep. selection effects and tidal alignment of halos/galaxies: $\delta_g^s = (b_g - b_q/3 + (f + b_q)\mu^2) \delta_m$
- *•* We find terms like *b^q* present in simulations and BOSS galaxies
	- $-$ Split galaxies based on line of sight velocity dispersion σ_{+} and M_{+}
	- $-$ Simple test − subsamples matching P_0 \implies matching P_2
- Galaxy clustering depends on other local properties, not just halo mass:
- *•* **First detection of galaxy assembly bias to exceed** 5*σ***!**
- *•* **Problem for RSD since** *b^q* **completely degenerate with** *f***!**
- **•** LRGs, ELGs, groups/clusters, 21cm, voids, etc. selection effects?