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Overview
• We have a very successful ΛCDM model describing the

Universe

• Cosmological information contained in different observables
• Inhomogenities dominant source of information, mainly

through 2-point statistics of fluctuations
• CMB measurements still dominate the constraints on

cosmological parameters
• But Large-scale Structure is 3D – expected to ultimately have

more constraining power
• Upcoming galaxy redshift surveys (DESI, Euclid) will reach

unprecedented precision
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Large-scale structure

• Overdensity field:
δm(x) = ρm(x)/ρ̄m − 1

• Power spectrum:
Pm(k1, k2) ∝ ⟨δm(k1)δm(k2)⟩

• Cosmological Principle: Pm(k )
• However we neither observe dark

matter nor real-space positions x

SDSS
4
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Linear bias and redshift-space distortions
Galaxies, halos, voids, 21cm, Lyα forest ... all biased tracers of matter in real space, observed
in redshift-space

• δg(k) = bgδm(k) ⇐⇒ Pg(k) = b2gPm(k)

• bg linear scalar bias of e.g. galaxies
• bg depends on halo mass & redshift:

– massive objects more biased
– objects more biased earlier

• In redshift-space, linear theory for matter:

δs
m(k, µ) = (1 + fµ2) δm(k), µ = k∥/k

• Equivalence principle =⇒ no velocity bias

δs
g(k, µ) = (bg + fµ2)δm(k)

SDSS
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Galaxy power spectrum in redshift-space

• Linear theory: P s
g (k, µ) = (bg + fµ2)2Pm(k)

• Use Legendre expansion into multipoles:

Pℓ(k) =
2ℓ+ 1

2
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• Measuring P0 & P2 gives bg & f
• Note quadrupole P2 ∝ f
• In real-space P2 = 0
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Galaxy power spectrum in redshift-space

• Linear theory: P s
g (k, µ) = (bg + fµ2)2Pm(k)
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• Measuring P0 & P2 gives bg & f
• Note quadrupole P2 ∝ f
• In real-space P2 = 0
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Growth rate f
One of the key parameters

• f ≡ d ln D(a)
d ln a

• GR prediction: f = Ωm(z )0.55
• Important for:

– Testing Gravity
– Constraining neutrino masses
– Testing dark energy models
– ...

• Currently ∼ 5− 10%
• Future surveys (DESI, Euclid)

expected to reach ∼ 1− 5%
precision Planck, 2018

7



Assembly bias
Bias depends on other scalar properties, for fixed halo mass and redshift

• Formation
history

• Age
• Spin
• Concentration
• Shape ...

Wechsler+, 2018

Detected in simulations, no convincing evidence in data
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Non-scalar bias
• At the linear level in δm we usually assume: δg(k) = (bg + fµ2)δm(k)

• There’s another term linear in δm – traceless part of the tidal field:

sij(x) = (∇i∇j∇−2 − δij/3) δm(x) ⇐⇒ sij(k) = (kikj/k2 − δij/3) δm(k)

δg(k) = (bg + fµ2)δm(k) + bijsij(k)

• Only non-scalar properties can correlate with tidal field
– projected sizes, velocity dispersion & angular momentum
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How correlated are halos & tidal field?
We use 1000 Quijote N-body sims (Villaescusa-Navarro+, 2019) to measure cross-correlations
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Non-scalar bias
• At the linear level in δm we usually assume: δg(k) = (bg + fµ2)δm(k)

• There’s another term linear in δm – traceless part of the tidal field:

sij(x) = (∇i∇j∇−2 − δij/3) δm(x) ⇐⇒ sij(k) = (kikj/k2 − δij/3) δm(k)
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• Only non-scalar properties can correlate with tidal field
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• Azimuthal symmetry & bq ≡ bzz

δg(k, µ) = (bg + fµ2)δm(k ) + bzz(µ
2 − 1/3)δm(k )

=
(
bg − bq/3 + (f + bq)µ

2
)
δm(k )

• First pointed out by Hirata (2009)

11



Non-scalar bias
• At the linear level in δm we usually assume: δg(k) = (bg + fµ2)δm(k)

• There’s another term linear in δm – traceless part of the tidal field:

sij(x) = (∇i∇j∇−2 − δij/3) δm(x) ⇐⇒ sij(k) = (kikj/k2 − δij/3) δm(k)

δg(k) = (bg + fµ2)δm(k) + bijsij(k)
• Only non-scalar properties can correlate with tidal field

– projected sizes, velocity dispersion & angular momentum

• Azimuthal symmetry & bq ≡ bzz

δg(k, µ) = (bg + fµ2)δm(k ) + bzz(µ
2 − 1/3)δm(k )

=
(
bg − bq/3 + (f + bq)µ

2
)
δm(k )

• First pointed out by Hirata (2009)

11



Non-scalar bias
• At the linear level in δm we usually assume: δg(k) = (bg + fµ2)δm(k)

• There’s another term linear in δm – traceless part of the tidal field:

sij(x) = (∇i∇j∇−2 − δij/3) δm(x) ⇐⇒ sij(k) = (kikj/k2 − δij/3) δm(k)

δg(k) = (bg + fµ2)δm(k) + bijsij(k)
• Only non-scalar properties can correlate with tidal field

– projected sizes, velocity dispersion & angular momentum

• Azimuthal symmetry & bq ≡ bzz

δg(k, µ) = (bg + fµ2)δm(k ) + bzz(µ
2 − 1/3)δm(k )

=
(
bg − bq/3 + (f + bq)µ

2
)
δm(k )

• First pointed out by Hirata (2009)
11



Anisotropic assembly bias (AB)
δs

g = (bg + fµ2)δm =⇒ δs
g = (bg − bq/3 + (f + bq)µ

2) δm

• Parameter bq is the anisotropic assembly bias

• Source of anisotropy in the real space power spectrum
• Additional source of anisotropy in the redshift-space
• Note bq is perfectly degenerate with f !
• bq = 0 if:

– Selection independent of halo orientation,
e.g. projected size, velocity dispersion, angular momentum

– or if observed tracer and host halo randomly misaligned
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Halo selection based on tensor properties
Selection on radial halo extent & velocity dispersion σ1D in real space

• Real-space P2 = f = 0

• P2 ̸= 0 → bq ̸= 0

• Halos: ∆bq ≈ 1− 2

• Redshift-space f ≈ 0.7
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What about real galaxies?
When split on orientation dependent quantities, do galaxies show different clustering strength?
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What about real galaxies?
When split on orientation dependent quantities, do galaxies show different clustering strength?

• Baryon Oscillation Spectroscopic Survey
BOSS DR12 galaxy sample

• ∼ 106 galaxy redshifts
• 0.15 < z < 0.7

• Luminous red galaxies, bg ∼ 2

• Ellipticals, Mh ∼ 1013M⊙/h
• Galaxy samples

– LOWZ (0.15 < z < 0.43)
– CMASS (0.43 < z < 0.7)

SDSS 15



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f

• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq

• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• Need orientation dependent gal. property

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• Need orientation dependent gal. property
• Galaxy Properties from Portsmouth Group

– velocity dispersion σ⋆ (1D)
– stellar mass M⋆

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• Galaxy Properties from Portsmouth Group
– velocity dispersion σ⋆ (1D)
– stellar mass M⋆

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• Galaxy Properties from Portsmouth Group
– velocity dispersion σ⋆ (1D)
– stellar mass M⋆

• Split on σ⋆ = split on orientation & galaxy
mass (σ2

⋆ ∝ M⋆)

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• Galaxy Properties from Portsmouth Group
– velocity dispersion σ⋆ (1D)
– stellar mass M⋆

• Split on σ⋆ = split on orientation & galaxy
bias bg(M⋆) → different P0 & P2

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• Galaxy Properties from Portsmouth Group
– velocity dispersion σ⋆ (1D)
– stellar mass M⋆

• Split on σ⋆ = split on orientation & galaxy
bias bg(M⋆) → different P0 & P2

• Use M⋆ to remove mass (bg) dependence

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• Galaxy Properties from Portsmouth Group
– velocity dispersion σ⋆ (1D)
– stellar mass M⋆

• Split on σ⋆ = split on orientation & galaxy
bias bg(M⋆) → different P0 & P2

• Make subsamples with either
– high M⋆, low σ⋆ or
– low M⋆, high σ⋆

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• Galaxy Properties from Portsmouth Group
– velocity dispersion σ⋆ (1D)
– stellar mass M⋆

• Split on σ⋆ = split on orientation & galaxy
bias bg(M⋆) → different P0 & P2

• Make subsamples with either
– high M⋆, low σ⋆ or
– low M⋆, high σ⋆

• How do we match monopoles?

16



How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)
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• Subsamples can have different bg & bq
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• Mismatch P2 → evidence ∆bq ̸= 0
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– Need to account for z-evolution
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• Find subsamples matching P0 & n(z)!
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• How do we match monopoles?
– Grid of 25 (σ⋆,M⋆) subsamples
– Measure mean amplitude
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• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?
– Grid of 25 (σ⋆,M⋆) subsamples
– Measure mean amplitude
– Low (σ⋆,M⋆) – low amplitude
– High (σ⋆,M⋆) – high amplitude
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Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?
– Grid of 25 (σ⋆,M⋆) subsamples
– Measure mean amplitude
– But we want matching amplitude!
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• How do we match monopoles?
– Finally select samples with:
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• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?

• What about quadrupoles?
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How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?

• Match P0 & n(z ) → match P2
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How do we look for AB?
Main idea – split on orientation (σ⋆) → look for differences in anisotropy (∆bq)

• Subsamples matching n(z ) have matching f
• Subsamples can have different bg & bq
• Find subsamples matching P0 & n(z)!
• Mismatch P2 → evidence ∆bq ̸= 0

• How do we match monopoles?

• Match P0 & n(z ) → match P2

• Mismatch P2 → evidence ∆bq ̸= 0
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Results – CMASS NGC
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Results – LOWZ NGC
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Detection significance

• Use mock galaxy catalogs
• Split each mock in two random

subsamples
• Cross-correlate each subsample with

full mock
• Minimize ∆Pℓ = P sub,1

ℓ − aℓP sub,2
ℓ

• Matching monopoles – a0 ≈ 1

– within 1σ at all scales
• Different quadrupoles – a2 ̸= 1

– many σ’s away!
• =⇒ ∆bq ̸= 0 between subsamples
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Combined detection significance
5σ using kmax ∼ 0.15 h Mpc−1
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Discussion

• We present significant evidence of AB in BOSS galaxies

• We show clustering of galaxies depends on local properties
other than halo mass

• Our detection is the first to exceed the level of 5σ
• We only measure ∆bq of subsamples, not the full sample bq!
• For BOSS galaxies we find subsamples with ∆bq ∼ 0.1− 0.2

• For halos in sims we found subsamples with ∆bq ∼ 1− 2

• Misalignment of galaxies and halos decreases the signal
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Consequences for DESI

Main questions: Is target selection of X orientation dependent? Is X aligned with halo?

• DESI Emission Line Galaxies (ELGs)

– Fiber magnitude vs. model magnitudes
– Faint galaxies near the detection threshold could be impacted more
– Faint galaxies are also more numerous!
– ELGs contain dust =⇒ more face-on than edge on galaxies
– However, ELGs aligned weaker than LRGs
– We are currently looking into ELG targets to see how big selection effects are

• DESI Luminous Red Galaxies (LRGs)

– Similar to BOSS, better measurement of AB
– Are LRGs dust free?
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Other consequences

• Groups/clusters found in redshift-space

– ... in simulations exhibit strong AB signal in their clustering
• Could be an issue for RSD with 21cm Intensity Mapping

– ... due to HI self-absorption, provided HI aligned with halos

• ...
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Summary

• Non-scalar halo properties are correlated with large-scale tidal fields
• Orientation dep. selection effects and tidal alignment of halos/galaxies:

δs
g = (bg − bq/3 + (f + bq)µ

2) δm
• We find terms like bq present in simulations and BOSS galaxies

– Split galaxies based on line of sight velocity dispersion σ⋆ and M⋆

– Simple test – subsamples matching P0 =⇒ matching P2

• Galaxy clustering depends on other local properties, not just halo mass:
• First detection of galaxy assembly bias to exceed 5σ!
• Problem for RSD since bq completely degenerate with f !
• LRGs, ELGs, groups/clusters, 21cm, voids, etc. selection effects?
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Other splits and approaches

• We find no signal when splitting on projected
physical size R0 & M⋆

– Larger fractional scatter of R0 compared to σ⋆

• Previous works used Fundamental Plane (FP):

I b
0σ

a
⋆

R0
∼ const.

with I0 surface brightness

– Martens+18 marginal signal with (I0,R0)
– Singh+20 no signal with full FP

• We do FP analysis with (a, b ) grid
• Kaiser model for multipoles assuming bq = 0

• Results on AB very sensitive to (a, b ) values

– Perhaps explaining previous results...
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Summary

• Non-scalar halo properties are correlated with large-scale tidal fields
• Orientation dep. selection effects and tidal alignment of halos/galaxies:

δs
g = (bg − bq/3 + (f + bq)µ

2) δm
• We find terms like bq present in simulations and BOSS galaxies

– Split galaxies based on line of sight velocity dispersion σ⋆ and M⋆

– Simple test – subsamples matching P0 =⇒ matching P2

• Galaxy clustering depends on other local properties, not just halo mass:
• First detection of galaxy assembly bias to exceed 5σ!
• Problem for RSD since bq completely degenerate with f !
• LRGs, ELGs, groups/clusters, 21cm, voids, etc. selection effects?
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