A Hybrid Deep Learning Approach to Cosmological Constraints From Galaxy Redshift Surveys

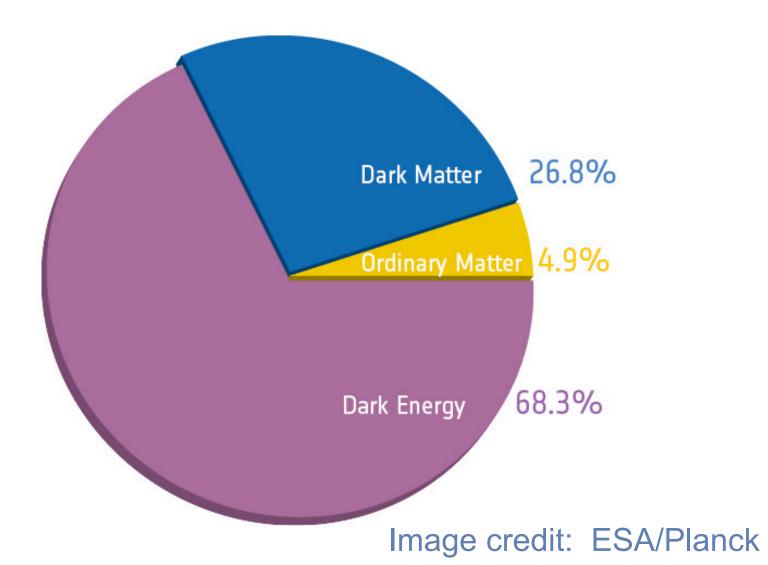
Michelle Ntampaka in collaboration with Daniel Eisenstein, Sihan Yuan, and Lehman Garrison

CENTER FOR

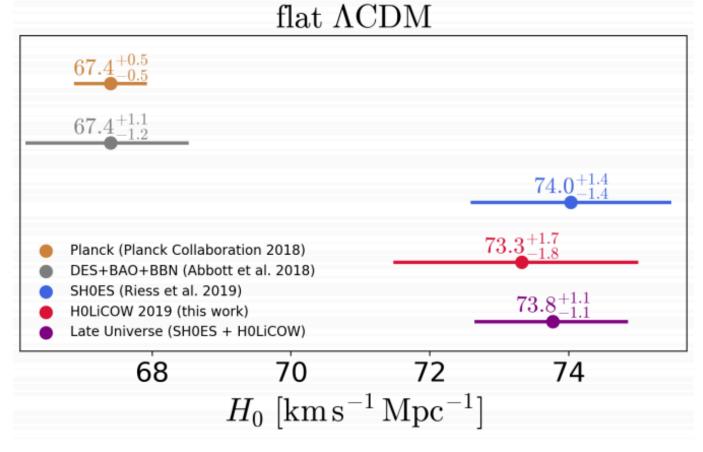
ASTROPHYSICS

HARVARD & SMITHSONIAN

ACDM Cosmological Model

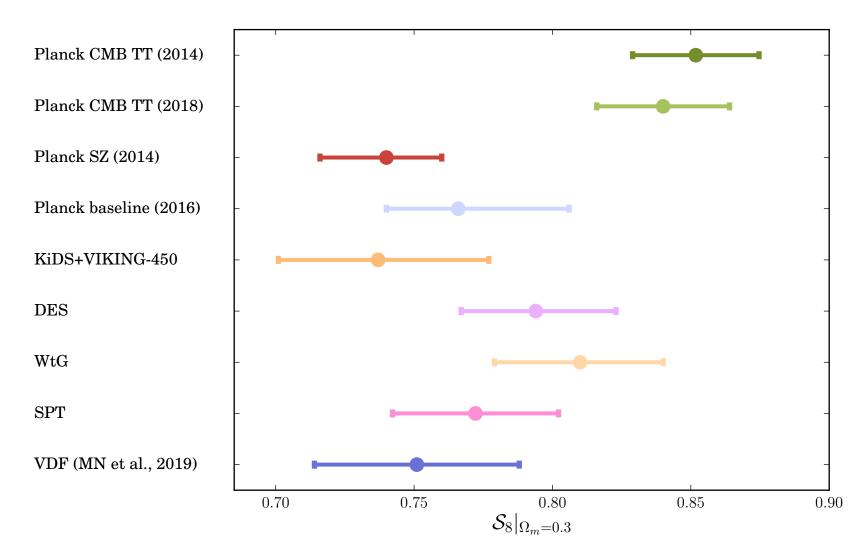


Tensions in the current cosmological model: H_0 (early vs. late Universe)

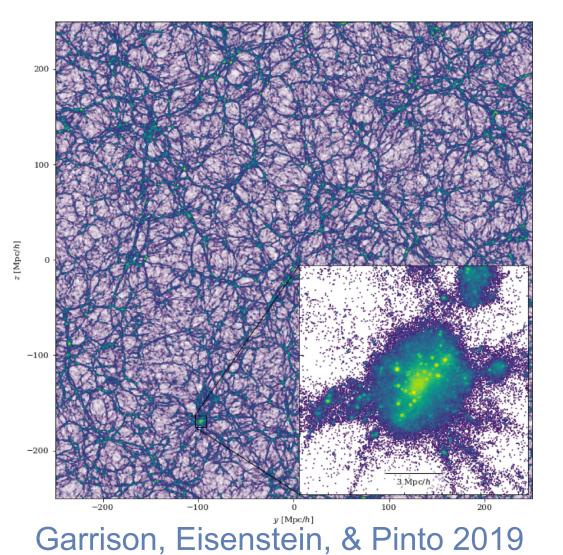


Wong+ 2019

Tensions in the current cosmological model: σ_8 (CMB vs. LSS)

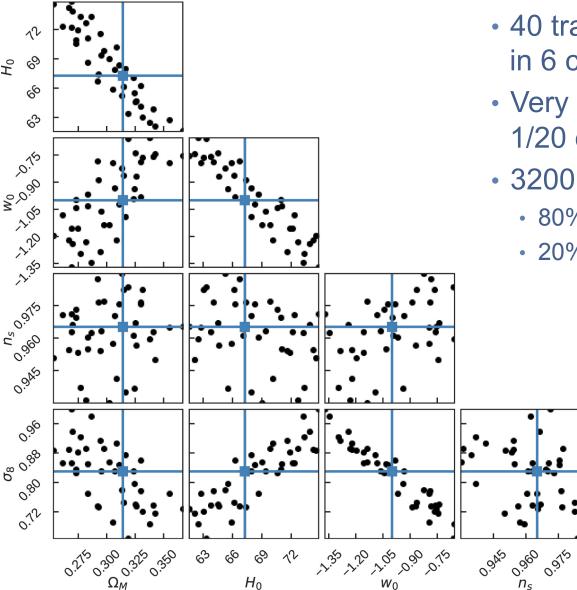


Constraining ACDM with Large Scale Structure



- Spatial distribution and clustering of galaxies (via the power spectrum)
- Cosmic shear
- Baryon acoustic oscillations
- Abundance of clusters

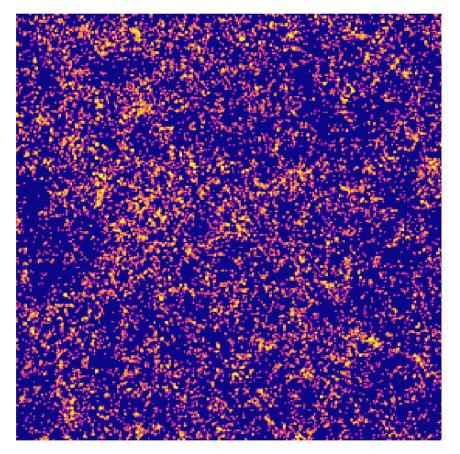
AbacusCosmos Suite of N-body Simulations



- 40 training simulations that vary in 6 cosmological parameters
- Very small mock observations, 1/20 of the ~Gpc³ box
- 3200 mock observations
 - 80% for training
 - 20% for validation

Garrison+ 2018

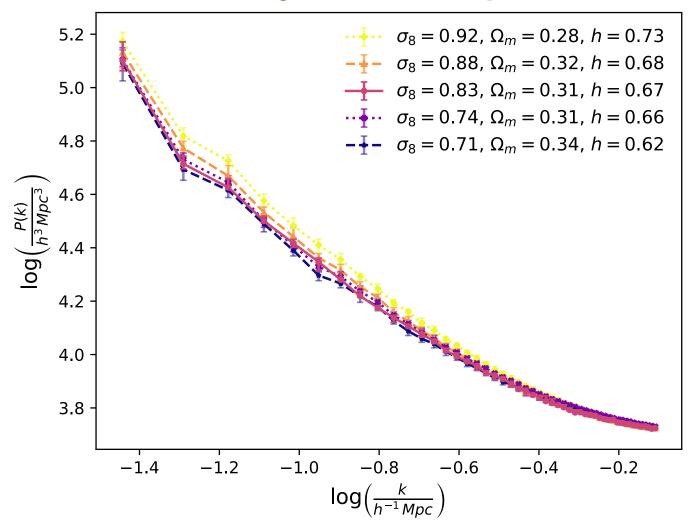
3D Mock Galaxy Catalogs



- Halo catalogs are populated with galaxies according to a generalized Halo Occupation Distribution.
- 6 parameters to capture a range of galaxy formation models.

A 2D projection of a sample 3D galaxy catalog.

A Standard Approach: The Galaxy Power Spectrum



Galaxy Power Spectrum

The power spectrum does not tell the whole story!

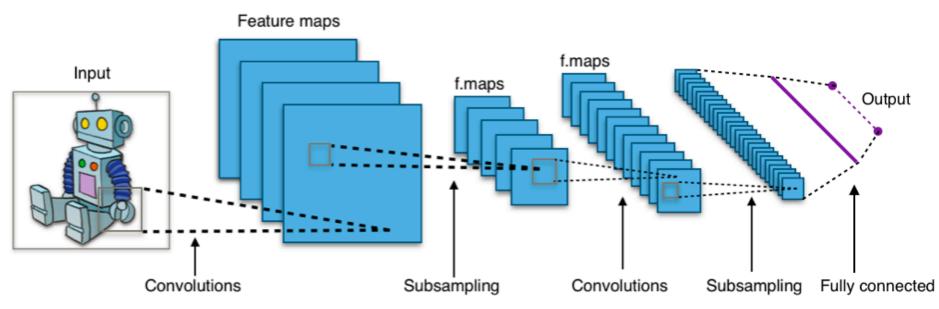
Other statistics are rich in complementary cosmological information:

- 3-point correlation function (Yuan et al. 2018).
- Redshift space power spectrum (Kobayashi et al. 2019).
- Counts-in-cylinders (Wang et al. 2019).

Can we use physics *plus* ML to improve constraints on cosmological parameters?

Can a deep ML method find meaningful patterns – beyond the power spectrum – that correlate with cosmology?

2D Convolutional Neural Network (CNN)

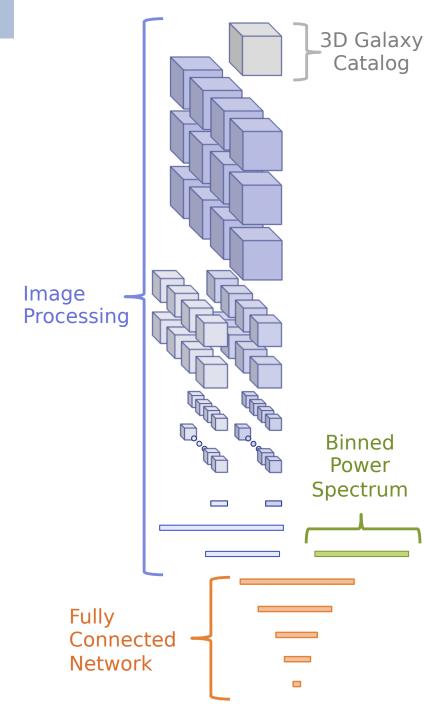


- Start with an input image
- Goal: predict a label (at the output neuron)
- Learn a system of convolutional filters to extract features (shapes, edges, textures, etc.) from the image
- Learn the weights and biases to use these features to predict answers and minimize loss.

Image by Aphex34, available under Creative Commons Attribution-Share Alike 4.0 International

3D hybrid CNN Architecture

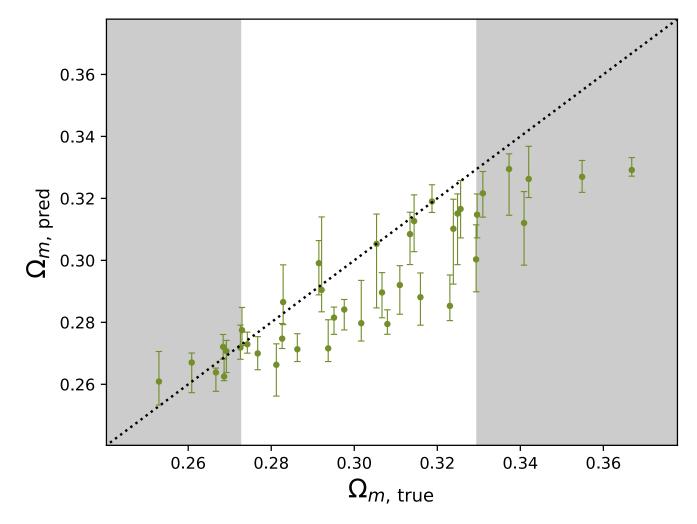
- Power Spectrum Neural Network
 input:
 - Binned Power Spectrum
- Hybrid CNN input:
 - 3D Galaxy Catalog
 - Binned Power Spectrum
- 2 cosmological parameters predicted (σ_8 and $\Omega_m)$



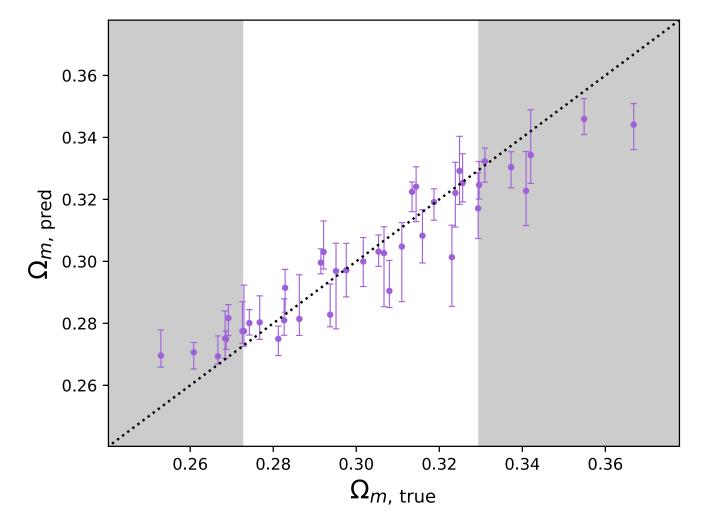
Architecture Choices

- Simulation length scales → Voxel size
- Matched phase simulations
 Train/validate split
- Matched phase simulations
 ML architecture with aggressive dropout
- Correlations in galaxy number count with cosmology → downsampling

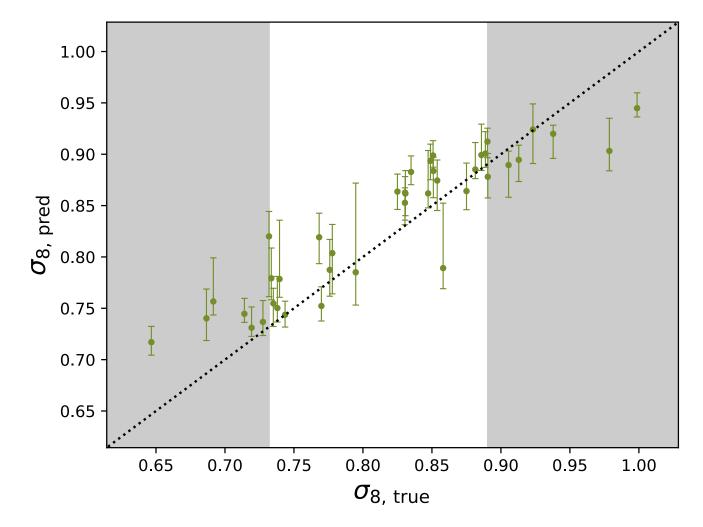
Ω_m Constraints – Power Spectrum



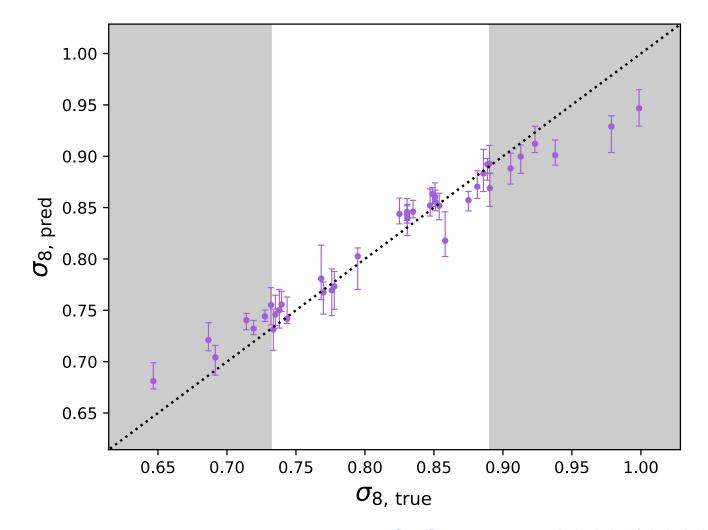
Ω_m Constraints – Hybrid CNN



σ₈ Constraints – Power Spectrum



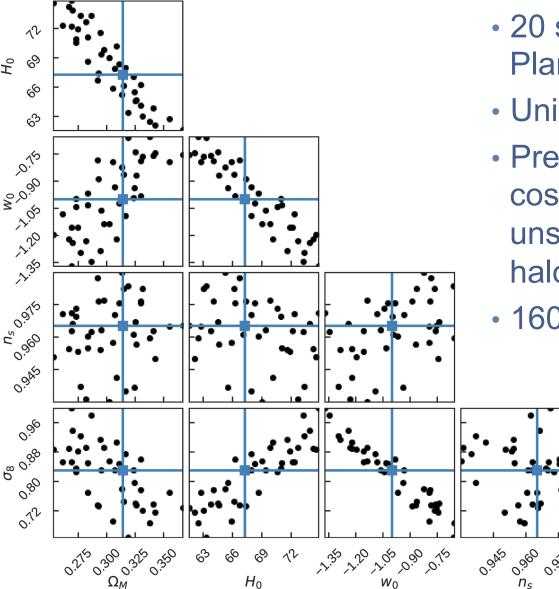
σ₈ Constraints – Hybrid CNN



Proceed with Caution!

- The network was trained to recognize these cosmologies – will it interpolate to cosmologies its never seen before?
- 2. The network was trained on matched-phase simulations is it memorizing structures that correlate across simulations?

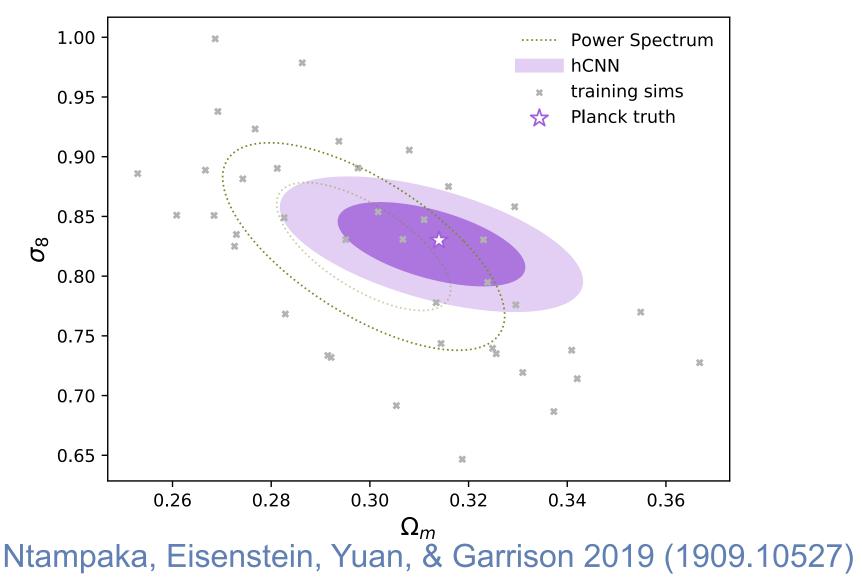
Planck Simulations Testing Catalog



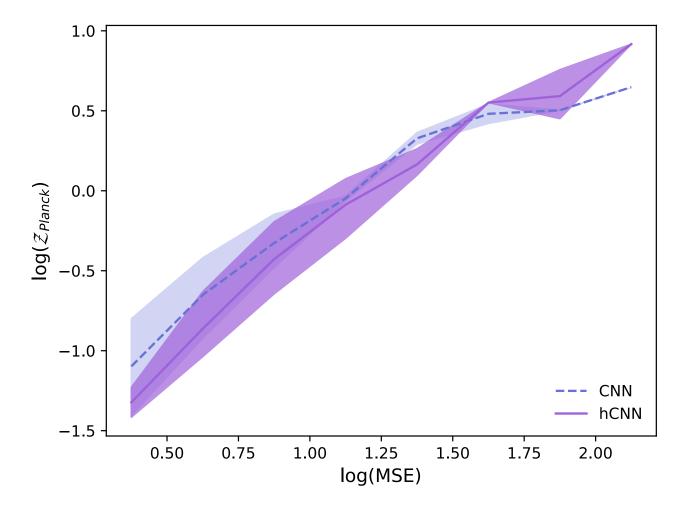
- 20 simulation suite at the Planck cosmology.
- Unique initial conditions.
- Previously unseen cosmology and previously unseen model for populating halos with galaxies.
- 1600 mock observations.

Garrison+ 2018

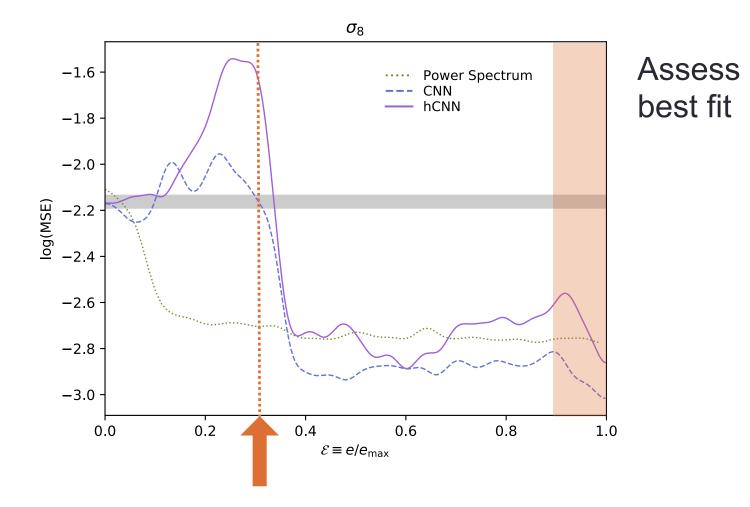
Planck Test Set Constraints



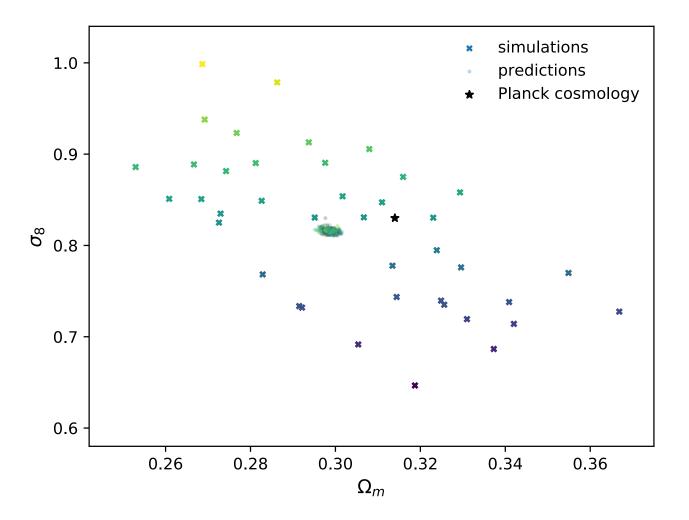
Lessons From Training #1: The Validation Set Helps!

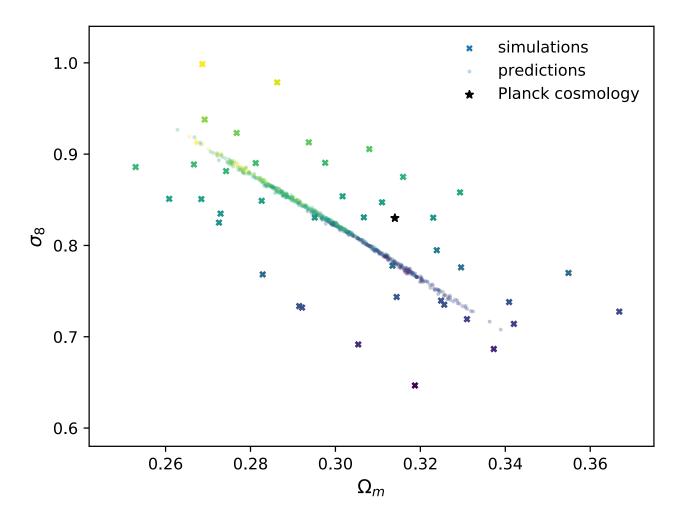


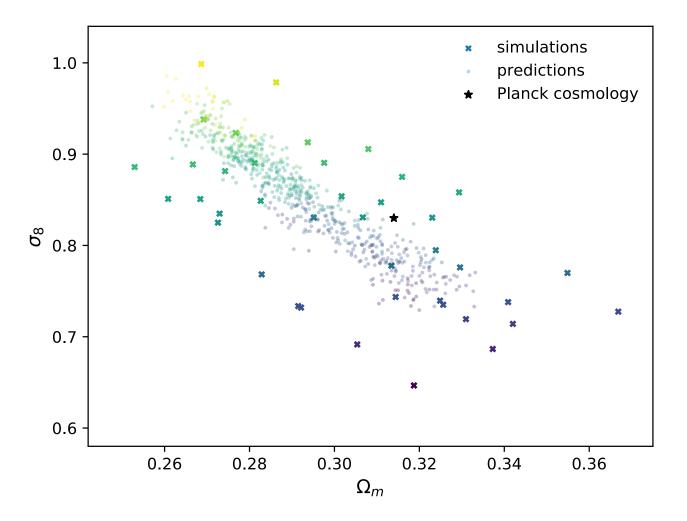
Lessons From Training #2: Summary Stats Can Lie

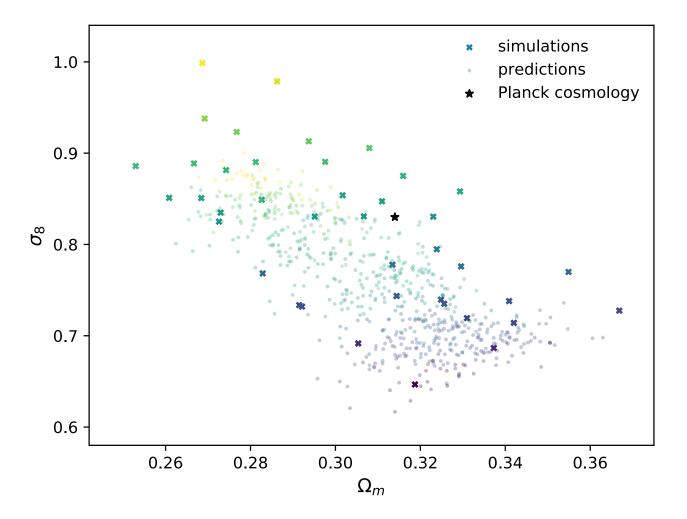


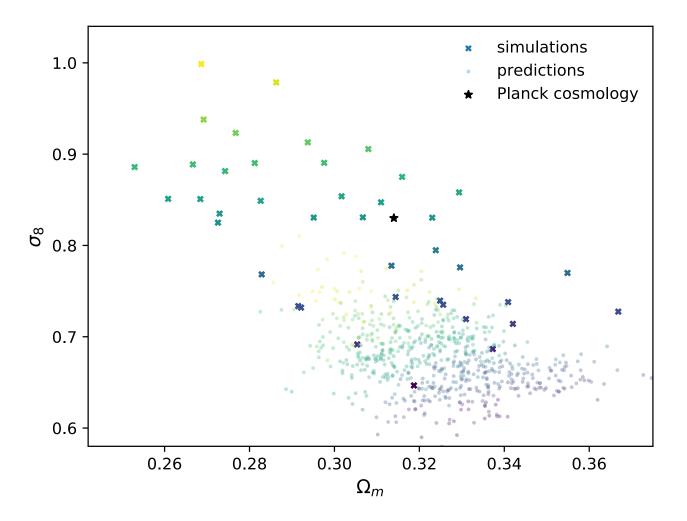
Transition to lower learning rate











Using 3D CNNs to Constrain Cosmological Parameters

- Can put ~3% constraints on σ_8 and ~4% constraints on Ω_m (compare to Planck constraints: ~1% and ~2%, respectively)
- Small volume: 0.07 h⁻³ Gpc³
 (the SDSS DR11 BOSS observation is ~60x larger!)
- The hCNN extracted useful patterns in spite of complicating factors such as small observation volume, varying cosmological parameters, and uncertainties in galaxy formation models
- Ntampaka, Eisenstein, Yuan, & Garrison 1909.10527

Deep neural network interpretability: Ntampaka+ 2019 1810.07703

michelle.ntampaka@cfa.harvard.edu