COSMOLOGICAL PROBE COMBINATION FOR CURRENT & FUTURE SURVEYS

Andrina Nicola, Princeton University UC Berkeley, January 25th 2022

MAIN COLLABORATORS

Aizhan Akhmetzhanova - Harvard

David Alonso - Oxford

Roohi Dalal - Princeton

Shirley Ho - CCA

Mathew Madhavacheril - Perimeter

Anže Slosar - BNL

Jo Dunkley - Princeton

Boryana Hadzhiyska - Harvard

David Spergel - CCA/Princeton Paco Villaescusa-Navarro - Princeton/CCA

+ LSST-DESC LSS working group, Alexandre Refregier, Adam Amara

THE PILLARS OF THE ACDM COSMOLOGICAL MODEL

$\Lambda + DM + GR + INFLATION$

Our Dark Universe

"I say, there is no darkness but ignorance." — William Shakespeare, Twelfth night (IV.II)

4

COSMOLOGICAL PROBES

Image: Nicolle R. Fuller, National Science Foundation

Galaxy Clustering & Weak Lensing

Cosmological Observables

Images: Planck, Science, icons made by Freepik from www.flaticon.com

THE POTENTIAL OF JOINT ANALYSES

- Robust constraints on ACDM & extensions due to complementarity Consistency tests of cosmological model Constraints on astrophysical systematics, e.g. baryon
- feedback
- Systematics calibration & identification

Power Spectra

Nicola et al., 2017

ANEW ERA FOR OBSERVATIONAL COSMOLOGY

Past

e.g. SDSS, Planck

Present & Future

e.g. HSC, LSST/Rubin, ACT/SPT, CMB S4

Images: ACT, Ivezić et al., 2008

Our Non-Linear Universe

Additional information contained in: Cosmological fields at small spacial scales Non-Gaussian features

Image: Ilustris Collaboration / Illustris Simulation

GALAXY CLUSTERING

Images: 6dF, Science News

11

HSC PHOTOMETRIC CLUSTERING WITHIN LSST DESC

Apply/test LSST pipeline on LSST-like data set Test viability of tomographic Fourier space analysis for photometric clustering Try to maximize sample size, i.e. go beyond e.g. LRGs, redMaGiC Include small-scale information

THE HYPER SUPRIME CAM SURVEY (HSC) AS A PRECURSOR FOR LSST

HSC area: 1000 sq. deg. Deep ($r_{\rm lim} \sim 26$), good seeing Precursor to LSST Most analyses focused on 150 sq. deg. (DR1)

Survey table: HSC SSP, footprint: E. Medezinski

SAMPLE SELECTION

HSC DR1 data Galaxies with mag_i < 24.5 4 redshift bins: 0.15-0.50, 0.50-0.75, 0.75-1.00, 1.00-1.50 Photo-z: COSMOS reweighting

14

Systematics & Signal Maps

POWER SPECTRUM CONSISTENCY TESTS

THEORETICAL MODELING

Small-scale clustering (k_{max} ~ 1 Mpc⁻¹) Halo model (e.g. Seljak 2000, Peacock et al., 2000, Ma et al., 2000) Halo occupation distribution (e.g. Berlind & Weinberg, 2002, Zheng et al., 2005)

$$P_{gg}(z,k) = P_{gg,1h}(z,k) + P_{gg,2h}(z,k)$$
$$P_{gg,1h}(k) = \frac{1}{\bar{n}_g^2} \int dM \, \frac{dn}{dM} \bar{N}_c \left[\bar{N}_s^2 u_s^2(k) + 2\bar{N}_s u_s^2(k) \right]$$
$$P_{gg,2h}(k) = \left(\frac{1}{\bar{n}_g} \int dM \, \frac{dn}{dM} \, b_h(M) \, \bar{N}_c \left[1 + \bar{N}_s u_s(k) \right] \right)^2 P_{\text{lin}}(k)$$

HOD MODELING DETAILS

Redshift-dependent 6-parameter HOD model $N_a(M) = N_c(M)(f_c + N_s(M))$

Centrals: $\bar{N}_c(M) = \frac{1}{2} \left| 1 + \operatorname{erf} \left(\frac{\log M - \log M_{\min}(z)}{\sigma_{\ln M}} \right) \right|$ satellites: $\bar{N}_s(M) = \Theta(M - M_0(z)) \left(\frac{M - M_0(z)}{M_1(z)}\right)^{\alpha}$ where

$$\log M_i(z) = \mu_i + \mu_{i,p} \left(\frac{1}{1+z} - \frac{1}{1+z_p} \right), \ i \in [\min, 0, 1]$$

Fiducial model

Redshift-dependent 3(+3)-parameter HOD: $M_{\min}(z) M_0(z) M_1(z)$ Remaining HOD parameters fixed to $f_c = 1 \ \alpha = 1 \ \sigma_{\ln M} = 0.4$ Cosmological parameters fixed to Planck 2018 Photo-z uncertainties: p(z) shift Δz_i & width $z_{w,i}$

Power Spectra

HOD CONSTRAINTS

Nicola et al., 2020

HOD REDSHIFT EVOLUTION

Nicola et al., 2020

PROPERTIES OF GALAXY SAMPLE

GALAXY BIAS FOR MAGNITUDE-LIMITED SAMPLES

 $b(z, m_{\lim}) =$

$$= \overline{b}(m_{\lim})D(z)^{\alpha}$$

Nicola et al., 2020

SMALL-SCALE POWER SPECTRUM

Hadzhiyska et al., 2021

SMALL-SCALE POWER SPECTRUM - ONGOING WORK

GALAXY CLUSTERING WITH HSC DR3

Dalal et al., in prep.

LSST DESC BIAS CHALLENGE

WEAK GRAVITATIONAL LENSING

Images: NASA/ESA, radioGREAT, NASA/STScl

ACCESSING SMALL-SCALE INFORMATION WITH WEAK LENSING

Images: S. Skillman, Y-Y. Mao, KIPAC/SLAC National Accelerator Laboratory, Huang et al., 2019

CONSTRAINING COSMOLOGY & BARYON PHYSICS FROM 2PT-FUNCTIONS

X-Ray

тSZ

FRBs

Images: eROSITA, Madhavacheril et al., 2020, Danielle Futselaar/artsource.nl

SIMULATIONS

ILLUSTRISTNG

CAMELS: 2000+ simulations of V = $(25 h^{-1} Mpc)^3$, run for IllustrisTNG/SIMBA

SIMBA

Nelson et al., 2019, Davé et al., 2019, Villaescusa-Navarro et al., 2021

IllustrisTNG

SIMBA

Weinberger et al., 2017, Pillepich et al., 2018, Davé et al., 2019

BARYON FRACTION AS PREDICTOR OF FEEDBACK

$$\bar{f}_{\text{bar}} = \frac{1}{N_h} \sum_{i}^{N_h} \frac{M_{\text{bar},h,i}}{M_{\text{tot},h,i}}, \ 10$$

Averaged relative accuracy: $\langle \delta P/P \rangle \sim 25\%$

 $M^{12} < M_{\text{tot},h,i} < 10^{13} h^{-1} M_{\odot}$

van Daalen et al., 2020

Forecasting Constraints

FORECASTED ERRORS FROM ILLUSTRISTNG

Forecasts for $P_{ee}(k), z = 0, k_{max} = 10 \ h \ Mpc^{-1}$

Nicola et al., 2022

ROBUSTNESS OF CONSTRAINTS TO SUBGRID PHYSICS

Systematic Uncertainties from Testing on SIMBA

Bias on recovered values not significant relative to error bars

Nicola et al., 2022

RUBIN/LSST

Cerro Pachón, March 2nd 2021

10 year optical survey of 20'000 sq. deg. First data expected in 2023 Deep, will image ~10⁹s of galaxies Main observables: weak lensing & clustering

MOVING BEYOND TRADITIONAL METHODS

Image: S. Skillman, Y-Y. Mao, KIPAC/SLAC National Accelerator Laboratory

SIMULATION-BASED INFERENCE

Akhmetzhanova et al., in prep.

Alsing et al., 2019, Tejero-Cantero et al., 2020

 $p(D_*|\boldsymbol{\theta})$

THE COSMOLOGICAL DATA REVOLUTION

2026 2027 2028 2029 CMB-S4 Next Generation CMB Experiment

Images: DESI, Euclid, SO, Rubin/LSST, Roman, CMB S4

TESTING PILLARS OF ACDM WITH FUTURE SURVEYS

LSST DESC SRD, 2018

SUMMARY

Combined probe analyses essential to constrain cosmology Break parameter degeneracies Robust test of cosmological model Identification, understanding and calibration of systematics

Future surveys will deliver high-precision data Significant information in small-scales, non-Gaussian features Limited by systematics

Two approaches

Extend traditional analysis methods Develop novel analysis methods based on joint forward-modeling and simulation-based inference

