

**Raul Monsalve** 

October 29, 2024 Space Sciences Laboratory, University of California Berkeley



Credit: NASA / WMAP Team

### Observing the Universe's Dark Ages and First Stars Through Measurements of Distortions in the Global Radio Spectrum

# EVOLUTION OF THE UNIVERSE



# Emission at 21 cm from Hydrogen Atom

Ground state spin-flip transition



Parallel spins Upper ground state



# Spin Temperature $(T_S)$

Intensity of 21-cm radiation is expressed as a "Spin Temperature"

Relative abundance of ground states of hydrogen atoms

$$\frac{\boldsymbol{n_{\text{upper}}}}{\boldsymbol{n_{\text{lower}}}} = 3 \cdot exp\left(-\frac{h \cdot v_{21\text{cm}}}{k_{\text{b}} \cdot \boldsymbol{T_{\text{S}}}}\right)$$

 $v_{21cm} = 1,420 \text{ MHz}$  h: Planck constant  $k_{b}$ : Boltzmann constant

http://www.cv.nrao.edu/course/astr534/HILine.html

# **Global Evolutions**



Adapted from Greenhill 2018, Nature, 555, 38

High Redshift of 21-cm Signal

### *v***<sub>21cm</sub> rest frame:** 1,420 MHz

$$\boldsymbol{v_{obs}} = \frac{\boldsymbol{v_{21cm rest frame}}}{(1+z)}$$

| <i>z</i> = 6   | 200 MHz |
|----------------|---------|
| <i>z</i> = 30  | 45 MHz  |
| <i>z</i> = 100 | 15 MHz  |
| <i>z</i> = 300 | 5 MHz   |

# Standard Prediction for Global 21-cm Signal



# Nature and Timing of First Sources

20

10

z = 80.40

50

0 Ly-alpha [mK] -50 L<sup>p</sup> 100  $f_{a} = 0.01$ Increased yα coupling -150=100Dark Ages signal does not -200 depend on astrophysics 50 0 X-rays 20-50 L<sup>p|</sup> 100  $f_{x} = 0.01$ Decreased X-ray heating -150 c = 100-200 50 100 150 200 250  $\nu$ [MHz]

From Pritchard & Loeb (2011)

5

# Observation of Global 21-cm Signal

global 21 cm signal v + unpolarized foregrounds v + polarized foregrounds +

Foregrounds are >4 orders of magnitude stronger than 21-cm signal

Dominated by synchrotron radiation







# "Foreground" Spectrum



Monsalve et al (2024a) arXiv:2309.02996

#### Many experiments show free-free absorption below 3 MHz

10-19



arXiv:2301.09612

# **Big Challenge!**



## **Required Observation Time**



**Required Observation Time:** 

$$\Delta t = \frac{1}{\Delta v} \cdot \left(\frac{T_b}{\sigma_{T_b}}\right)^2$$

Example: 
$$\sigma_{T_b} = 0.01 \text{ K}$$
  
 $\Delta v = 1 \times 10^6 \text{ Hz}$ 

#### **Dark Ages:**

 $T_b = 100,000$  К  $\Delta t = 1 \times 10^8$  sec  $\approx 1,200$  days  $\approx 3.2$  years

#### **Cosmic Dawn:**

 $T_b = 10,000 \text{ K}$ 

 $\Delta t = 1 \times 10^6 \text{ sec } \approx 12 \text{ days}$ 

# LuSEE-Night

# Far Side of the Moon

Most radio-quiet site in the inner Solar System Very weak ionosphere

### Attenuation of Terrestrial RFI on Lunar Far Side

At 30 kHz



Bassett et al (2020) arXiv:2003.03468

#### Data from the Radio Astronomy Explorer 2 (RAE-2) spacecraft (Alexander et al. 1975)

Antenna length: 230 m Altitude: 1,000 km



frequency [MHz]

### Lunar Surface Electromagnetics Experiment (LuSEE)

## LuSEE-Night

- PI: Stuart Bale (SSL)
- Launch in December 2025
- Measuring at 0-50 MHz
- Targeting the 21-cm signal from the Dark Ages

SpaceX Falcon 9 RocketFirefly Blue Ghost Lander

### Frequency Range: 0-50 MHz





# Far Side of the Moon

Best radio-quiet site in the inner Solar System Very weak ionosphere

LuSEE-Night

# **Ground-based Experiments**

# EDGES

# Experiment to Detect the Global EoR Signature



# **EDGES Low-Band**



Wideband dipole antenna

### Absorption Feature Reported by EDGES in 2018



Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

# Two Instruments / Several Configurations



Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

# BRIEF COMMUNICATIONS ARISING

# Concerns about modelling of the EDGES data

ARISING FROM J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen & N. Mahesh Nature 555, 67–70 (2018); https://doi.org/10.1038/ nature25792

A **Ground Plane Artifact** that Induces an Absorption Profile in Averaged Spectra from Global 21-cm Measurements - with Possible Application to EDGES

Richard F. Bradley, Keith Tauscher, David Rapetti, and Jack O. Burns, ApJ, 874, 153 (2018)

# On the detection of a cosmic dawn signal in the radio background

(2022)

Saurabh Singh<sup>®1,2,3</sup><sup>™</sup>, Jishnu Nambissan T.<sup>1,4</sup>, Ravi Subrahmanyan<sup>®1,5</sup>, N. Udaya Shankar<sup>1</sup>, B. S. Girish<sup>®1</sup>, A. Raghunathan<sup>®1</sup>, R. Somashekar<sup>®1</sup>, K. S. Srivani<sup>®1</sup> and Mayuri Sathyanarayana Rao<sup>®1</sup>



SARAS 3 in a lake in India



The value of 1 is within 90% confidence range.



90% confidence range for scale, considering systematics and range of EDGES signals.

- 55-85 MHz band modeled with:
  - 7-term log-log polynomial
  - + 1 scale factor for best-fit EDGES signal

# Mapper of the IGM Spin Temperature (MIST)

Experiment began in 2018



Frequency Range: 25-105 MHz





### Two MIST Instruments Built in 2022

- Single-antenna, total-power radiometers
- Frequency range **25-105 MHz**
- Horizontal blade dipole antennas
- No metal ground plane
- Field measurements of **spectra** and **impedance** of **antenna**
- **Small and portable** for deployment at remote locations
- Power consumption of **15 watts**
- Powered by **12 V batteries**



#### Horizontal Blade Dipole Antenna

### **Receiver Box**

**No Ground Plane** 

31

### **Beam Directivity From EM Simulations**



Monsalve et al (2024a) arXiv:2309.02996

# **Decomposition of Beam into Analytical Functions**



### Xinze "Sunny" Guo

UC Berkeley Undergrad Student



### **MIST Observation Sites**



# **MIST** in 2022

# MIST in 2022: Deep Springs Valley, California

# MIST in 2022: Death Valley, Nevada


### McGill Arctic Research Station (MARS): Twin Otter Plane



#### McGill Arctic Research Station (MARS): Facilities



#### McGill Arctic Research Station (MARS): Expedition Fjord

#### McGill Arctic Research Station (MARS): Expedition Fjord

Vadym

## MIST in 2022: Arctic





## Arctic Wolves

## Antenna Temperature, 19 hours



## **Deep Springs Valley**



Monsalve et al (2024a) arXiv:2309.02996

#### **Death Valley**



arXiv:2309.02996

## **McGill Arctic Research Station**



arXiv:2309.02996

## **Foreground Characterization**

#### Example: Death Valley



#### Lisa Nasu-Yu

McGill Graduate Student



# **MIST** in 2023

#### Spring 2023

#### **Glaciologists and Cosmologists**

Raul

lan

#### Wonderful Glaciologists Friends

#### McGill Arctic Research Station (MARS)





## MIST in 2023: Arctic



## Antenna Temperature, 19 hours

Arctic (Spring 2023)



# **MIST** in 2024

#### Spring 2024

#### **Glaciologists and Cosmologists**

lan

Rau

Kenn Borek Air

#### Wonderful Glaciologists Friends

Tristan

### MIST in 2024: Arctic

In

Next to MARS itself On top of frozen lake

#### This is the lake we perforate to get water in the Spring

Ice thickness ~2 meters



### MIST in 2024: Arctic

Second instrument: "MIST-Low" Located 8 km west of MARS

Compared to "Standard" MIST:

Panel width: 60 cm -> 140 cm Panel height: 52 cm -> 75 cm

## MIST in 2024: Arctic MIST-Low



## Receiver Calibration in the Arctic at -30 degC



MIST has gathered 30 days of observations from the Arctic between 2022 and 2024

Sufficient SNR to test the presence of EDGES signal

Focusing on understanding soil effects

# **MIST** Antenna Impedance

- MIST antenna impedance strongly depends on soil properties
- Solve inverse problem and use impedance to estimate soil parameters



#### Ian Hendricksen

McGill Graduate Student



# Ground Penetrating Radar (GPR)



# Ground Penetrating Radar (GPR)

Ground Penetrating Radar (GPR) measurement 100 m x 100 m area centered at the MIST antenna Area was swept by pulling GPR with skidoo

#### Impedance of Monopole Antenna Inserted into the "Soil"



#### Effort led by Ian Hendricksen

# 10 Days Ago: Trip to Utah



EIGSEP Global 21-cm Experiment Prof. Aaron Parsons

#### Blade Monopole Antenna

**Receiver Box** 

## MIST In a Canyon (MISTIC)

- Hanging at 25 meters above the ground
- Took 1.5 days of observations
- Starting to analyze the data

# MIST In a Canyon (MISTIC)




## EIGSEP Antenna at 90-95 m Above the Ground



October 29, 2024 Space Sciences Laboratory, University of California Berkeley

Using ground- and space-based measurements we are getting close to observing the Universe before and during the formation of the first stars



October 29, 2024 Space Sciences Laboratory, University of California Berkeley



## Thank you very much

# **Extra Slides**

### One parametrization used for the Cosmic Dawn

seven astrophysical parameters were varied in the widest possible range: the minimum virial circular velocity of star-forming halos ( $V_c$ ), the star formation efficiency (SFE) ( $f_*$ ), the X-ray heating efficiency of early sources ( $f_X$ ), the lowenergy cutoff ( $\nu_{\min}$ ) of the X-ray spectral energy distribution (SED), the slope ( $\alpha$ ) of the X-ray SED, the mean-free path of ionizing photons ( $R_{mfp}$ ), and  $\tau_e$ .



Monsalve et al (2019) arXiv:1901.10943

## Interaction of Baryons with Dark Matter?

Enough IGM cooling to explain EDGES can be achieved if (Muñoz & Loeb 2018):

- ~ 1% of DM particles
- have mass ~ **1-60 MeV**
- and posses electric mini-charge, ~10<sup>-6</sup> the charge of an electron

**Possibility of non-gravitational interaction** between baryons and dark matter.



R. Barkana 2018, Nature, 555, 71

### **DionPy: Dynamic Ionospheric Model in Python**

Based on IRI (International Reference Ionosphere) https://pypi.org/project/dionpy/

### Vadym Bidula



#### **Transmission Fraction**



#### **Refraction Angle**

