Hell Reionization

Matt McQuinn Lars Hernquist & Matias Zaldarriaga

Adam Lidz, Phil Hopkins, Suvendra Dutta, C.-A. Faucher-Giguere

astro-ph/0807.2799

Reionization History

- Best Guess for reionization history of IGM
 - stars ionized HI (13.6 eV) and HeI (24.6 eV) at z > 6
 - quasars ionized HeII (54.4 eV) at $z \sim 3$.

Fan et al. (2001)

Evidence for Hell reionization occurring at z ~ 3:

- Measurements from Lyα forest find high IGM temperature and temperature increase at z~3
- Gunn-Peterson troughs in Hell Ly α forest at z > 2.8
- IGM Metal absorption lines suggest ionizing background is hardening around 55eV between 3.5 > z > 2.5 (Songaila '98, Boksenberg et al. '03, etc.)

Why study Hell reionization?

- Determines IGM temperature
- Less modeling uncertainty compared to HI reionization: many observations of quasars and of the z~3 IGM properties
- May be detectable in current data sets
- Affects cosmological parameter measurements as well as measurements of other quantities from the Lyman-α forest.

The sources: Quasars

- Beamed?
- Spectral index (α)?
- Lifetime/duty cycle?

Hopkins et al. (2007) Plot from McQuinn et al. (2008)

Furlanetto & Oh (2008)

The Ly α forest and the IGM

Cosmological simulations provide excellent agreement (e.g. Cen et al. 94):

Illustration from Faucher-Giguere, Lidz, and Hernquist (2008) Cosmology from forest :

McDonald et al. (2005) using SDSS QSO sample

Temperature-Density Relation in HI Lyman-α forest

Scatter plot of simulated gas parcels in the IGM at z = 2, 3, and 4 $z_{rei} = 5$) (관 10⁴ 10^{3} $z_{rei} = 10$ $\bigotimes 10^4$ 10^{3} 0.1 101 $1+\delta$

 A power-law relationship between T and ρ is assumed in all estimates from Lyα forest (such as estimates of cosmological parameters)

Is this justified if HeII reionization occurs at z ~ 3?

Hui and Gnedin (1997)

Lyα Forest Temperature

 T_0 = temperature at mean density

Hui & Haiman (2003)

Schaye et al. (2000)

Temperature increase confirmed by Ricotti et al. 2000 and Theuns et al. 2000. McDonald '01 and Zaldarriaga '01 did not find a temperature increase.

Photo-ionization heating

Important Numbers

Heating Input

- Optically thick limit $\Delta T_{HeII} = 30,000 \left(\frac{0.5}{\alpha - 1}\right) \text{K}$

- Optically thin limit

$$\Delta T_{HeII} = 5,000 \left(\frac{3.5}{\alpha + 2}\right) \text{K}$$

– Mean Free Path

 $\lambda = 5 x_{\text{HeII}}^{-1} \left(\frac{E_{\gamma}}{100 \text{ eV}}\right)^{3} \left(\frac{1+z}{4}\right)^{-2} \text{ comoving Mpc}$ - For $\alpha = 1.5$, ½ energy in photons with E > 150 eV, 1/2 of photons below 90 eV Propagation of QSO HeIII front in Homogenous Universe at z = 3

An L_{*} quasar has $R_b = 20$ cMpc

SIMULATING HEII REIONIZATION

Previous Work on Hell Reionization

- Assumed all the heating is within HeIII front/sharp fronts
- Used simulation boxes that are too small (<= 100 Mpc)
- Did not study heating and spatial structure of temperature fluctuations

Hell reionization in 100 Mpc box (Paschos et al. 2007)

Radiative Transfer Simulations

- Follow rays from each source. Case B recombination. Rays travel c Δt in a timestep.
- 256³/512³ grid RT in 190 Mpc and 430 Mpc box
- 1024³ N-body simulations. Assume smoothed dark matter field approximates gas.
- Radiative transfer done in post processing.
- M_{cell} =10⁹ -10¹⁰ M_{sun}. We have run a series of tests that show results are robust to resolution. (McQuinn '08)
- Initial conditions:
 - T = 10,000 K @ z = 6
 - x_{HeII} = 1, x_{HI} ~ 0

Fiducial QSO model assumes $t_{qso} \sim 50$ Myr, $\alpha =$ 1.6, isotropic emission, & L_{*} QSOs in $\sim 10^{12}$ M_{sun} halos

No density Fluctuations

White > 25,000 K Black < 10,000 K

z~4.5

Ν

∼ 3.5 Initial conditions (@ z = 6): x_{HeIII} = 0 T = 10⁴ K

McQuinn et al. (2008)

Using LCDM Density Field

1.7deg. 200 cMpc

time

Temperature

25

T (kilo-K)

10

QSO model assumes $t_{qso} \sim 50$ Myr, $\alpha = 1.6$, isotropic emission, & L_{*} QSOs in 10^{12} M_{sun} halos

White > 25,000 K Black < 10,000 K

McQuinn et al. (2008)

Hell Reionization in 430 Mpc (4°) Box

Light Bulb (t_{qso} = 10 Myr)

200 cMpc

Harder Spectrum

- UV spectral index uncertain
 - 1.6 results if extrapolate between optical and X-ray of individual QSOs
 - Telfer et al ('02) finds 1.6
 between 1 Ry and 4 Ry
 from composite spectrum
 - Scott et al ('04) finds 0.6
 between 1 Ry and 4 Ry
 - Hell absorption in host system will harden spectrum

simulation w/ α =0.6 rather than 1.6

McQuinn et al. (2008)

Temperature Structure

Temperature at mean density

T- Δ Relation

Contours enclose 33, 66, 90, 99, 99.9% of cells

Toy Model

- Photons with MFP > bubble size go into uniform background
- A region is heated by background until an ionizing front crosses
- Hopkins et al '07 QSO luminosity function
- Helll regions are uncorrelated with density
- Density evolved with Zel'dovich approximation

Comparison with Observations

McQuinn et al. (2008)

SEARCHING FOR HEIII BUBBLES IN HI AND HEII LYMAN-A FOREST

Lya forest 1D Power Spectrum

Lai et al. (2005) also showed with toy models that HeII reionization has small effect on large-scale 1D forest power spectrum.

3D Lyman-α Forest Power Spectrum

McDonald and Eisenstein (2007) Errors are forecasts for SDSS III

SDSS III: 120,000 QSO spectra

Transfer function used to initialize simulation does not have baryon wiggles.

This wavelet is a Gaussian times a sine wave with $\sigma = 35$ km/s, k = 6/ σ

Similar method discussed in Theuns and Zarubi '00, Zaldarriaga '02, Theuns et al '02.

Detecting Temperature Fluctuations with Wavelets

Illustration from Lidz,..., McQuinn et al. (in prep)

Future Directions: Hell Lyman-α Forest

- Our simulations (for which z_{Hell reion} ~ 3) in agreement with observations of Hell forest mean opacity (McQuinn et al. '08)
- COS on Hubble will increase number of sightlines <u>soon</u>

Heap et al. ('98)

Mysterious Dip in HI Effective Optical Depth

 $\tau_{eff} = -\log(< Transmission >)$

Instantaneous Hell reionization:

Extended Hell reionization:

Feature seen in measurements of Bernardi et al. (2002), Faucher-Giguere et al. (2008)

Can Hell reionization teach us about hydrogen reionization?

Hydrogen Reionization (log[x_{HI}])

McQuinn et al (2006)

Hell Reionization (x_{Helll}) McQuinn et al (2008)

100 Mpc

200 Mpc

Conclusions

- Hard photons heat regions far from quasars, leading to the regions that are ionized last being the hottest and 10⁴ K temperature fluctuations on 50 cMpc scales.
- Hell reionization results in ΔT ~ 10⁴ K. Can reconcile observed z~3 IGM temperatures.
- Results in complicated T- Δ relation.
- Difficult, but possible, to isolate effect of HeII reionization in HI Lyman-α forest

Filtering by Dense Systems

- Harder photons reach ionization front
- Harder photons outside of front preferentially absorbed by dense gas (e.g. Bolton, Oh, & Furlanetto 2008) -- τ_{eff} has weaker dependance than E⁻³ for dense systems

Filtering by Dense Systems (continued)

McQuinn et al. (2008) using method of Haardt and Madau (1996)

Filtering By Dense Systems: Results

How dark matter traces the gas.

Metal Lines

Songaila (1998)

Boksenberg et al. (2003)

Wavelet PDF (averaged over skewer)

W

Power Spectrum

Ionized Regions in the Universe

- Around a star
 - $n_{H} \sim 10^{3} \text{ cm}^{-3}$
 - R ~ 10¹⁶-10²⁰ cm
 - $\lambda_{mfp} \sim 10^{14} \text{ cm}$
 - Stromgren radius
 - often subsonic
- <u>HII region during</u> <u>hydrogen reionization</u>
 - $n_{\rm H} \simeq 10^{-4} (1+z/10)^3 \, {\rm cm}^{-3}$
 - R ~ 10 cMpc (many galaxies within)
 - $\lambda_{mfp} \sim 10 \text{ kpc}$
 - supersonic

<u>Hell Reionization</u>

 n_{He} ~ 10⁻⁶ (1+z/4)³ cm⁻³
 R ~ 20 cMpc (1 QSO)

$$\lambda_{mfp} = 5 x_{HeII}^{-1} \left(\frac{E_{\gamma}}{100 \text{ eV}}\right)^3 \left(\frac{1+z}{4}\right)^{-2} \text{ cMpc}$$

- Supersonic
- Never reaches Stromgren radius