

Mapping cosmic structure in the next decade: Where imaging and spectroscopic surveys intersect

Jamie McCullough, Princeton University

ENERGY G T T N BWOXLS NI

Presenting major contributions from Alex Amon, Jared Siegel, Elisa Legnani, Daniel Gruen, and others in DES, DESI, and DESC

Image credit: Ralf Kaehler, Carter Emmart, Tom Abel, Oliver Hahn

the number of galaxies that the Vera Rubin Observatory will observe in its ten year survey, perhaps ~10-20% with well measured shapes

20,000,000,000

our ability to model our observations and astrophysical processes

We are entering a domain where **systematics**, not statistics, limit our knowledge of the universe.

Weak Gravitational Lensing

Gravitational lensing

probes **foreground structure** in the universe by measuring the shear of galaxy shapes around foreground matter, or *lenses*. The path light takes is **warped around massive structures**, even if that matter is invisible to us — like refraction through a piece of glass.

The shear we see depends on the **geometry** of the lens and the source galaxies.

Weak gravitational lensing

is in the regime where the lensing effect on shape is *small* (~1%) — with enough source galaxies it can statistically measure **large-scale structure** in the universe

We need the **ensemble of distances** for the lens and the source galaxies with high accuracy.

We can examine an applied shear as a linear addition to the shape moment of *ellipticity*

$$e = \frac{a^2 - b^2}{a^2 + b^2}$$

$$e_i^{obs} \approx e_i^{true} + \gamma_i \quad i \in (1,2)$$

The Ingredients for Lensing (ex. The Dark Energy Survey)

If you do it right...

Jeffrey & Gatti et al., 2021 [incl. JM], Chang+2018, Vikram+2015

Upcoming Challenges ...

wavelength, Å

Unknown color-redshift relation for **faint** galaxies with high precision

McCullough+2024

More accurate intrinsic alignment models dramatically **limit our** cosmological constraints

McCullough, Amon, Legnani, Gruen+ 2024

Blue cosmic shear

NASA, ESA, CSA, Rogier Windhorst, William Keel, Stuart Wyithe, JWST PEARLS Team, Alyssa Pagan

Intrinsic alignment can masquerade as cosmic shear

 $\langle e_i^{v,e} \rangle \approx 0$, $\langle e_i^{obs} \rangle \approx \langle \gamma + e_i^{int} \rangle$

Do we understand intrinsic alignment in lensing survey populations?

Samuroff+2023

Johnston+2019 (KiDS + GAMA)

Weak lensing challenge: modelling the intrinsic alignment of galaxies

15

Cosmic shear is dominated by small k, but **mixes many scales** across redshift bins. (*Preston et al 2023*, DES Y3)

How can we separate out **strongly aligned** galaxies from our lensing sample?

- (1) When galaxies interact heavily they strip their gas and quench star formation (**cluster members are red**)
- (2) **Star-forming** spiral galaxies have **less dense neighborhoods**, maybe they're less aligned?

(3) Direct measurements (though highly uncertain) find **blue galaxies** have alignment **consistent with zero** and the most alignment in massive elliptical galaxies

Let's pick a **pure sample** of **star-forming** spirals:

- We can select on **color** and **distance** to identify star-forming galaxies (e.g., with SOMPZ cells informed by deep field SED fitting)
- We repeat the Y3 cosmic shear analysis with our new sample (~65 million galaxies), redoing redshift and shear calibration.

McCullough, Amon, Legnani, Gruen+ 2024

The Ingredients for Lensing (ex. The Dark Energy Survey)

With a **blue**, star-forming selection of **galaxies** we find:

 S_8

- Consistent cosmology & improved goodnessof-fit regardless of IA model.
- Data prefer the no IA model & more complex IA model parameters consistent with zero

Compared to the **red sample** complement, our results have a higher Ω_m and minimize shifts in S_8 due to IA model choice

McCullough, Amon, Legnani, Gruen+ 2024

With a **blue**, star-forming selection of **galaxies** we find:

McCullough, Amon, Legnani, Gruen+ 2024

For most lensing we only have images...

The 4MOST Complete Calibration of the Color-Redshift Relation

(4C3R2) PIs: JM & Daniel Gruen

Allocated **980k fiber hours** ~3% of all 4MOST!

4C3R2 aims to cover to z < 1.55

- in wide, ~45 per cell (Z < 21.5)
- in deep, ~10 _____

More telescope time than has ever been granted to a photo-*z* calibration effort!

Fig. from Gruen & McCullough+23 See the ESO Messenger Article on 4C3R2

The Dark Energy Spectroscopic Instrument (DESI)

and the <u>DESI Complete Calibration of the Color-</u> <u>Redshift Relation (DC3R2) spare fiber program</u>

Credit: DESI Collaboration

The magnitude problem

If galaxies have the same color (spectral shape), do bright things look like faint things?

Bright things are easier to observe.

If we have to calibrate color-redshiftmagnitude, it will take *months* of dedicated time uninterrupted on multiplexed telescopes. Shallower observations Fig. from McCullough+24

 $\frac{\Delta z}{(1+\bar{z})} \approx \Delta (dz/dm) \times (\bar{m}_{wide} - \bar{m}_{spec}) \approx 0.001 \text{ (DESC Y10)}$ With DESI spec-z alone $\Delta (dz/dm) \leq 0.0005$

A proposal: DESI-Deep

Co-leading w/ Biprateep Dey in the C3 photo-z topical group, with others incl. Noah Weaverdyck, Johannes Lange

Target a **representative magnitude selected sample** for as faint as is feasible in lensing deep drilling fields.

DESI is as efficient as Keck at observing faint objects, and multiplexed.

Avoiding complex colorselections as much as possible.

Data-driven intrinsic alignment

NASA, ESA, CSA, Rogier Windhorst, William Keel, Stuart Wyithe, JWST PEARLS Team, Alyssa Pagan

How does alignment depend on galaxy luminosity?

DESI Y1 overlap with SDSS+KiDS+HSC+DES yields >22x more galaxies with precise positions and shapes than have ever been used to measure IA

Princeton grad student, **Jared Siegel** leading this in DESI-Y1

How does alignment depend on galaxy color?

DESI Y1 overlap with SDSS+KiDS+HSC+DES yields >22x more galaxies with precise positions and shapes than have ever been used to measure IA

Princeton grad student, **Jared Siegel** leading this in DESI-Y1

How does alignment depend on galaxy color?

Siegel, JM, Amon+ (in prep)

Fine property splits in DESI samples can **isolate drivers of alignment** and help tune future **selections in lensing surveys**

Princeton grad student, **Jared Siegel** leading this in DESI-Y1

Where do we go from here?

Where do we go from here?

Where do we go from here?

Previously... pure, blue galaxies in DES have no alignment

McCullough, Amon, Legnani, Gruen+ 2024

Pros:

- → Can eliminate 5 free parameters in our modeling, **1.5x** constraining power
- → Can use all scales (w/ flexible baryon feedback)

Cons:

- → Lose statistics we toss away up to 1/3 of the sample
- → No direct observation that all of the galaxies we select have no alignment

Solution: Use direct observations and what we know about galaxy properties to set a prior.

What do we know about galaxies?

What do we know alignment depends on?

estimates of their passive fraction

estimates of their stellar mass and luminosity

$$A_{IA}(b) = \sum_{c \in b} w_c N_c f_{r,c} A_{IA}(L) \qquad A(L) = A_\beta \left(\frac{L}{L_{\text{break}}}\right)^\beta \text{ with } \begin{cases} \beta = \beta_1 & \text{ for } L < L_{\text{break}} \\ \beta = \beta_2 & \text{ for } L > L_{\text{break}} \end{cases}$$

Upcoming Challenges & Conclusions

DESI can roughly span the space for LSST Y1, but we require more comprehensive high-z, high density spectroscopic tracers.

Blue shear is an approach to reduce systematic bias from IA, and a stepping stone to building data-driven inference to regain lost statistical power