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Probing the Cosmic Dawn
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Using the most ubiquitous matter present - Hydrogen!

Hydrogen atom & its spin axis

Prior to reionization = Cosmic dawn Neutral
- Hydrogen is plenty!
_ What is the signal?

fo = 1420 MH Emission due to spin flip transition
0 — 4 s ! 7

A =21c
JL o e When the spin axis changes from aligned to
Spin-Flip J\‘\‘\l4 anti-aligned
C/ e Produces radiation at 1.42 GHz




Hydrogen’s signal is redshifted into radio frequencies.

1420 MHz © after the Big Bang
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Two approaches to measure the redshifted 21cm

1.) Measure sky averaged signal EDGES - Western Australia
e Signal sensing element/antenna
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Two approaches to measure the redshifted 21cm

2.) Statistical detection - Power spectrum
e Using interferometers / radio arrays
e Measuring the change in brightness temp along the line of sight

and on the plane of the sky

Credit: McQuinn



https://docs.google.com/file/d/1FzS74t3Hvd-uP84BEbAySuvsJnY3bOM9/preview

Main observational challenges with 21cm observations
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EDGES a single dipole in Western Australia

e Experiment to Detect the Global EoR Signature

e Science goal: search for the global 21-cm from Cosmic EDGES Low band antenna in Australia
Dawn and EOR

e Sensing element: antenna (horizontal dipole) over a
ground plane

e Operates over: 50-200 MHz
o  Lowband: 50 -100 MHz (Cosmic Dawn)

o Highband: 100 - 200 MHz (EoR) ﬁl, Grund ;
o Midband: 60-120 MHz (confirming Cosmic Dawn) S plane

e Receiver is below the ground

e Two calibration schemes:
o  Switching (field)
o  Absolute calibration (lab)




The EDGES Team
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Evidence of the first stars

e Surprising depth, timing and shape.

e Possible indication of:
o  Excess radio background (eg. Fialkov &
Barkana 2019)
o  DM-baryon interactions
m eg. Millicharged DM (eg. Barkana
2018, Liu+2019, Berlin+2018)
o High-z black holes (eg.
Ewall-Wice+2018)
o  Soft-photon emission from light dark
matter (eg. Fraser+2018)
o Early Dark Energy (eg. Hills & Baxter
2018)

e .. ordoes it suffer from systematics?
(eg. Hills+2018, Sims+2020, Singh+2020)

SARAS 3 (Singh+2022) claims non-detection!
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New EDGES data processing pipeline

Nivedita Mahesh, Steven G Murray, Judd Bowman, Alan EE Rogers, Raul Monsalve, Peter Sims, In prep

 [¥) edges-collab
EDGES Collaboration

EDGES collaboration has developed a new, open-source
data processing pipeline with repos to processes all the way
from raw field data to final products for various analyses

69 http://loco.lab.asu.edu/edges/

Why did we spend countless hours understanding, improving and building upon the 10000+ lines of the 2018 legacy C pipeline?

e Need for an independent processing pipeline to keep us honest
o  Provides modularity and full traceability
o  Allows simple switching of analysis choices & techniques

e Independently process the same EDGES low-band data
e Understand the impact of different data processing choices at various stages of the analysis

o  Forward modelling effects on the inferred astrophysical & cosmological parameters
o  Enable future Bayesian frameworks for more fidelity in inference

e  Will accompany EDGES-3

e We want to develop interoperable tools for this growing community.
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https://github.com/edges-collab

Reﬁroducmg Bowman et al. 2018 with edges-analysis

b Using the same dataset and the same analysis choices as 2018
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LST binned analysis

Motivation :
e Test the global nature of the signal (Liu+2013,
Tauscher+2016)

e More information & degrees of freedom

Simultaneous LST bin fits:
e The HPBW of edges beam ~ 75 deg = 5hr
e Data binned into 4 bins of 5 hours each with 1 hr between
bins
Different foreground models for each bin
Estimate same absorption model for all bins

Four GHA bins:
e 21-2hr
e 3-8hr
e 9-14hr
e 15-20hr

Residuals(K)

Residuals to 5 term LogPoly
}

113.1mK
84 7mK
94 .2mK
157.8mK
= GHA-235 hr
GHA-5.5 hr - ea
= GHA-11.5 hr === B18
= GHA-17.5 hr \
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Freq(MHz)

B18 & edges-analysis results agree

@ the binned data level too



edges-estimate: Simultaneously fitting four 5 hour GHA bins
Foreground estimates

e  One absorption model for the four data bins

. GHA centers(hr) T,5(K) Beta
D e  Four foreground models for the four data bins
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New Data: EDGES-3, Rotated EDGES-2, Mid-Band, ...

(Re-)Analysis with the new pipeline, convergence on what the data tells us in different cuts.
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Future of EDGES

EDGES-3

Upgrades:

1. Receiver embedded in antenna
a. No balunloss
2. In-situ/real-time calibration

3. Lesschromatic beam
(larger 50x50m ground plane)

4. Fat dipole optimized for 60 - 160 MHz

Status:

e Tests in Devon Island (Portable model)
e In Australia: EDGES-3 actively collecting data
since Nov 2022.




EDGES-3 Devon Island Deployment

e Devon Island is the largest uninhabited
island in the world, at 75°N in the
Canadian Arctic - generally free of RFI

e Team of three from Haystack hitched a
ride with five members of the Haughton
Mars Project, led by Pascal Lee

e 50 x 25 m ground plane was
constructed using ~ 9 km of
meandering copper wire. o

power and data cables

EDGES antenna
with internal electron

e Total time on island was 25 days, only
able to obtain 12 days of usable data.

e Expedition was in August, thus the sun
was always up




L essons learnt from Devon island

e Sun extremely active currently

e Sporadic-E caused FM stations (and
perhaps power line noise) to contaminate
data from ~ 2000 km away.

e Temperature control is extremely important
for VNA functionality.

e Meandering copper wire functions
sufficiently as a ground plane.

e Currently unexplained RFI at low end (50 to
60 MHz)




EDGES-3 Australian Deployment

e Located at Inyarrimanha llgari Bundara, the
CSIRO Radio-astronomy Observatory in WA

e Permanent deployment completed in November
2022.

e A48 x48 m welded mesh ground plane was
installed, with EDGES-3 on a baseplate in the
center.

e Has been on sky since November 25th, and data =
continues to come in daily.
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EDGES 3 Australia - Upgrades and Maintenance - Feb 2024

Ground Plane survey to measure undulations using theodolite for EDGES-3
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EDGES 3 Australia - Upgrades and Maintenance

Orientation, tilt and roll of EDGES-3

The roll is almost non-negligible.

The maximum tilt is about ~1 deg.

The baseplate slopes from N to S in terms of
tilt.

7! — E
S
9 deg
=+
Roll Repeats | Offset | Roll Tilt Repea | Offset | Tilt
Measure (cm) (deg) Measurement | ts (cm) (deg)
ment
Parallel to | 1% 0 0 Perpendicular | 1% 1.8 0.61
excitation to excitation
Southside | 2™ 0.1 0.034 East 2™ 21 0.72
side
34 0.1 0.034 34 2.6 0.89
Parallel to | 1% 0.3 0.10 Perpendicular | 1% 2.6 0.89
excitation to excitation
Northside ond 0 0 V\_Iest ond 2.7 0.92
side
3¢ 0.2 0.068 3¢ 2.65 0.92




EDGES 3 Australia - Upgrades and Maintenance

Installation of Receiver-1 to low2-45

90 {antenna
p1 (oad)
P2 (oad+cal) —

Spectrometer: Switch time (ideal) = 1.500 seconds

Spectroneter: Hrite tine 96 seconds
: puty cycle 51
: Drop fraction
po (antenna) -- acdmin 9 0.096
p1 (anblent) -- acdnin
p2 (hot)

rtt 2024-055
Total run tine so fai




Preliminary analysis of the EDGES 3 data
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EDGES Summary

e Lots of work done by the EDGES collaboration to increase our confidence in our
instrument.

e Analysis moving in a forward-modelling direction.
o Developed an open source edges pipeline in python

o Reproduced!! the 2018 processed spectra using the same dataset and analysis
choices

o Now for all the interesting analysis to come: Forward model all the significant
processing choices, LST binned analysis, Process data from different EDGES
configurations

e Lots of data still to process and understand, including EDGES-3



What is the OVRO-LWA?

Time after 10 million 100 million 250 million 500 million 1 billion

e Owens Valley Radio Observatory (OVRO) Long el
Wavelength Array in California

e 352 Dual-polarization widefield dipole antennas B L e o

e Fully cross-correlated i

°® 12-85 MHZ % 0;’ T T T =—"_""""7" "/ TReionizatonbegins~ "~~~ ""7°° Reionization ends é

e Currently in its “Stage IlI” of operations a3 \/\ E
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The OVRO-LWA Stage Il Team
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Stage |

2013-2014
251 antennas

S outriggers

LEDA correlator (Kocz et al.
2015)
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Stage Il

2015-2020

283 antennas

Addition of 32 fiber-fed
outrigger antennas

Longest baseline extended to
1.5 km

Custom fiber-link board
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LWA:285
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Stage Il

Funded by NSF Major Research Infrastructure (MRI): $2.4 million

2023 - present

352 antennas

Longest baseline extended to 2.4 km
Complete overhaul of the analog and digital backend
Fully cross-correlated

Currently undergoing science commissioning
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Stage Il Preliminary Results

High-band: 63.5 MHz (45 MHz b/w) —~2h LST

10 seconds (left) and 10 minutes (center and right) ; Source: Gregg Hallinan




We have this incredible array to improve on 2019 upper limits!
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e Objective : achieve noise-limited performance for the first time with the recently upgraded and expanded
OVRO-LWA.

e For most existing arrays, observing the 21 cm signal in the Cosmic Dawn band is a post-hoc science goal.

e Upgraded OVRO-LWA is designed from the ground up and optimized for the CD band

e Upgrades have been targeted at reducing crucial spectral systematics that fundamentally limit all 21 cm
instruments.



OVRO-LWA Cosmology Pipeline

Team :

ASU- Judd Bowman, Danny Jacobs, Matthew Kolopanis, Katherine Elder

Caltech - Gregg Hallinan, Ruby Byrne, Xander Hall, Nivedita Mahesh
Calibration

Imaging & PS

RFI Flaggmg sky beam
model model

T

i

raw visibility visibility
data simulator

RFI model
flagging visibilities

flagged
visibilities

calibration

calibrated

visibilities

image cubes
(data and
model)

power
spectrum
estimation

power
spectrum




Why do we care about the Beam?

Galactic and extragalactic foregrounds are 10* - 10° >> Redshifted 21 cm from Cosmic Dawn

The statistical detection can be via: TLDR; I am my own problem
e Foreground removal
e Foreground avoidance

Effectiveness of either approach is limited by the beam
convolved sky

Source peeling leads to residuals ~ level of signal of interest
if the knowledge of the beam limited

Beam convolves the foreground to higher k-modes reducing
the window of cosmological detection




How do we obtain knowledge of the beams?

Via EM modelling

LWA dipole — b
Ground plane //_

Dielectric Soil

Soil is modeled with a 0 = 0.0013 S/m and €_= 3.7 (Spinelli+ 2022).
Long term plan: install hygrometer and collect soil data to be input for simulations



Need - Realistic beam in the array.

1.) Add complexity to the models: More antennas to the simulation; but in small sections

5

2.) Quantify the effect on a given beam.

3.) Converge on the simulation that captures the effect in the array

4.) Model the beam as: Primary beam + differential beam = to be used in the analysis pipeline



CAD Moael:
An;cgg:tiaoirsray one LWA element + ground
plane +soill
Assessing \FEKO
Be am Developed macros: Embedded H AR
Generate Array Factor+ — element beam 2.)Power beam
& Generate multiple solutions differences
configurationS/
Mutual
. . Pyuvdata Sky models
cou pl IN g ) Formatting (VLSS catalogue for
Extracting polarization OVRO-LWA)
information
OVRO-LWA —
I Antenna specific beams . Model visibilities for each
S CI e n Ce Telescope configuration baseline
CaseS Select baselines l
SimpleDS Delay spectra
Fourier transform ~ ——— Ccomparison
along freq axis against one
element beam




Step 1: Modeling a section of

the arra
beams

& solving for the

OVRO-LWA core

Antenna array
locations

CAD Model:
one LWA element + ground
plane +soill
S
FEKO
Developed macros:
Generate Array Factor +
Generate multiple
configurations
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Step 2a: Analyse embedded element beams; power
beam differences @ 20 MHz

e FEach embedded beam is
subtracted from the
Isolated beam

e Upto 6% deviations

e \With the innermost dipole
seeing the max deviation

e QOutermost the least




Step 2a: Delay spectra analysis on the beam
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Isolated dipole: The power is suppressed by 10 @ delays > 100ns -or-
baselines> 60 m

Mutually coupled dipoles: The desired suppression is @ delays >200
ns -or- baselines > 120 m




Step 3: Delay spectra analysis of the model Visibility

e  Generated model visibilities with pyuvsim and embedded beam solutions for 3 baselines

o  Used the specific beam for each antenna in the baseline

e The embedded elements increased the power by >10x at all delay modes compared to the isolated
beam

Power (abs)
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OVRO-LWA summary

e 21 cm measurements with the OVRO-LWA will probe Dark Ages, Cosmic Dawn, and X-Ray Heating
e [Eastwood et al. 2019 developed a first limit on the signal with Stage Il
e Forthcoming results will generate deeper 21 cm limits

o Improved uv coverage and long baselines

o  Systematic-resistant signal backend

o State-of-the-art data analysis

Beam Modeling efforts

e Apipeline in place to assess the effects of OVRO-LWA beams.
e  Shown preliminary results of simulating large-ish(?) chunks of the LWA array; Capturing mutual coupling.
e Generated model visibilities using sky models to quantify the beam effects more realistically.

Next steps

e Comparison against data: Model visibilities Vs. Field visibilities
e Add more antennas and come up with an analytical formulation of the mutual coupling.
e Incorporate the beams into the main calibration & data processing pipelines in memory and time efficient way
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DSA-2000 as Hi IM experiment

Nivedita Mahesh, Caltech
Phil Bull, University of Manchester

Inputs & discussions: Ruby Byrne, Gregg Hallinan, Liam Connor, Danny Jacobs



LIS/t

A world-leading radio survey
telescope and multi-messenger
discovery engine

* ~2000 x 5m dishes (19 x 15 km)

* Spring Valley, Nevada

* Frequency: 0.7 - 2 GHz band

* Spatial resolution: 3.3 arcseconds
* Highly optimized for surveys

,,,,,,,,,,,,,,,,,

* First light: 2027, key surveys: 2028 — 2033

* Design: Funded by Schmidt Sciences
* Construction costs: $188M



Why 21-cm Intensity mapping with the DSA-20007?

The DSA-2000 can overcome the challenges of other 21 cm
intensity mapping experiments

* Excellent sensitivity

* Extremely calibratable

* Resilient to foreground contamination



Other Helpful Design Features

* Relatively spectrally smooth frequency
response
* Supports foreground mitigation
* Enhances calibratability

* Spillover protection
* Reduces system temperature
* Provides beam stability

* Fully steerable dishes

» Eases beam characterization requirements
* RFI environment and mitigation




What cosmological observables can we look for?

C° ~T,%(b, + fu*)? exp(-k*u’e*,) D*(z) P(k, z=0)

<) ‘ '
Hi ocQ H(z)?
BAO scales, P(k)
Hi density function Matter density function, Linear growth turnover (cunnington
Growth rate | factor 2022)
Non linear
Bias factor dispersion

We begin our exploration of the capabilities of DSA as an IM experiment by forecasting constraints on
a few key observables

Fisher forecasting Framework in RadioFisher (Bull et. al. 2015)




Accessible transverse scales :
DSA as an interferometer & DSA as a dish experiment

For SD

Ddish =5m,

Sarea = 32,000 deg?
For interferometer:
D, =88m,

mi

D__ =16000m

m

shaded gray region superhorizon scales,
k<k,=2m/r,

z 2 1, the baselines can probe all the
relevant k scales for the BAO feature

P(K) turnover BAO wiggles
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Noise sensitivity vs k, (angular scales)

High noise indicates the array is very sparse.

Encouraging: can get very short baselines, and
cover the whole BAO feature at these

frequencies
But the layout needs to have more of a core, or
a few clustered sites, to get the baseline

density needed at these scales

==> Huge errors bars on the BAO constraints

£y
e Zoomed into d<200m reveals very few “ 1w
baselines of order 20 at the desired 5
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Constraints on BAOs & P(k) with current array layout

Forecast constraints on P(k)

ttot = 2800 hr
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P(k) [Mpc3]

Constraints on BAOs & P(k) with current array layout

Forecast constraints on P(k)

More realistically — considering k, & 3dB wedge

ttot = 2800 hr
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What are the desired baselines for the desired angular scales?

K _ (Mpc™ K (Mpc™ i
min(MPC™) max(MPC”) 6.1 2.55 1.367 Redoi () 0.42 0.183 0.014
250 1 1 1 1 1 1
P(k) 0.0024 0.03 BAO angular scale range
turnover P(k) turnover angular scale range
200
BAO 0.03 0.2
E
< 150
2
{K , , ,r)\}| g
| min,max " f' @
min , max 21 T 100
©
(aa]
Thus for z =1 we need more
d<50m for BAO constraints
d<20m for P(k) turnover constraints
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Noise sensitivity with an added core

Core specs: (10 x 10 antennas, Dmin = 5.5m)
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No. Of baselines

No. Of baselines

Fractional errors on P(k) with an added core

Core specs: (10 x 10 antennas, Dmin = 5.5m)
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No. Of baselines

No. Of baselines

BAO constraints with an added core

Core specs: (10 x 10 antennas, Dmin = 5.5m)
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UH/H

Expansion rate from radial scales

Constraints on Expansion, Growth, Acoustic Peak, QHi
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Summary

DSA 2000 extremely powerful (exquisite calibration, lower systematics,
foreground reduction)

Fisher forecasted a few Cosmological observables - Test the IM capabilities
For interesting cosmology from Hi IM we need a core

Constraints improve quickly with just ~100 antennas

Open Questions

5-10% more antennas (trade offs?)
Or is it more feasible to push freq_low to 500 MHZz?
Operate in Single dish mode - Need a plan for calibration
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Mission Statement:

Our mission is to demystify different careers, humanize South Asian women professionals, and inspire our
girls to explore. We believe that if girls are able to form authentic relationships with real professionals, they
will be able to see in them, themselves.
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What value are we bringing?

e Highlight and appreciate the accomplishments of South Asian women
e Show that role models aren't far from home

e Navigate the similar challenges & Learn from women before us

e Breaking stereotypes

e Demystifying the next steps

e Highlighting career possibilities they had never imagined

e Genuine words of reality - reduce self doubts & increase confidence
e Learning the ropes - to be able to put to use.

e All said & done - Inspiration is a thrill!



Thank you for inviting me!

QUESTIONS?

EDGES Open-source O edges-collab
pipeline:
Contact info: ;g{ nmahesh@caltech.edu

@ Nivedita Mahesh

y @nivedita_mahesh

Questions for
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