Cosmology with kSZ

Mathew Madhavacheril

with Nick Battaglia, Colin Hill, Simone Ferraro, Utkarsh Giri, Moritz Munchmeyer, Matt Johnson, Emmanuel Schaan, Jon Sievers, Kendrick Smith

- 1. What does kSZ measure?
- 2. Bispectrum formalism
- 3. Applications
 - a. Primordial Non-Gaussianity
 - b. Cosmic growth w/ FRBs
 - c. Feedback and lensing

Smith, MM, Ferraro ++ 2018 arXiv:1810.13423

Munchmeyer, MM, Ferraro ++ 2018 arXiv:1810.13424

MM, Battaglia, Smith, Sievers 2019 arXiv:1901.02418

(work in progress with Schaan, Battaglia, Ferraro, Hill, ++)

"I've been ionized, but I'm OK now." -- Dr. Buckaroo Banzai CMB backlight Years after the Big Bang 400 thousand 0.1 billion 1 billion 4 billion 8 billion 13.8 billion The Big Bang Formation of the first astronomical objects The Dark Ages Recombination Present day Reionisation Fully ionised Neutral Fully ionised 1000 100 10 Redshift + 1

Lots of (moving) free electrons

kSZ: Doppler shift of CMB photons scattering off electrons with bulk velocity

$$\frac{\Delta T_{\rm kSZ}(\vec{\mathbf{n}})}{T_{\rm CMB}} \sim \int d\chi e^{-\tau(z)} v_r \delta_e(\vec{\mathbf{n}},\chi)$$

Contributions from

- 1. Reionization (from first stars) 6 < z < 20
- 2. Ionized gas in and between clusters 0 < z < 6

WebSky simulations (George Stein, Marcelo Alvarez, Dick Bon

kSZ dominates CMB at ℓ >4000

Can in fact bias CMB lensing: see Ferraro, Hill 2017

kSZ dominates CMB at ℓ >4000

Can in fact bias CMB lensing: see Ferraro, Hill 2017

Modes to be explored by AdvACT, SPT-3G, Simons Observatory, CMB-S4

ACT x BOSS, Schaan++ '15

See also: Planck x WISE, Hill++ '16

Currently detected only at the <**5 sigma** level But expected to improve quickly with (deeper) CMB x galaxy overlap! SNR O(100-1000) expected!

What can we learn with the kSZ effect?

 $\frac{\Delta T_{\rm kSZ}(\boldsymbol{n})}{T_{\rm CMB}} \sim \int d\chi e^{-\tau(z)} \delta_e(\boldsymbol{n},\chi) \boldsymbol{v_r}$

Reionization (Smith+ '17, Ferraro+ '18)

Missing baryons (Lim+ '17, Hernández-Monteagudo+ '15)

Halo energetics and feedback (Battaglia+ '18)

Astrophysics

Large scale anomalies (e.g. Terrana+ '16)

Growth of structure? Growth rate? (e.g. Alonso+ '16) Neutrino mass? (Mueller+ '14) Dark energy? (Mueller+ '13)

Cosmology?

What cosmology can kSZ potentially constrain?

$$\frac{\Delta T_{\rm kSZ}(\boldsymbol{n})}{T_{\rm CMB}} \sim \int d\chi e^{-\tau(z)} \delta_e(\boldsymbol{n},\chi) \boldsymbol{v}_r$$

- Unbiased density modes inferred from velocities

$$v \approx \frac{faH}{k} \delta_m$$

 Velocities respond to growth rate f -> neutrino mass, dark energy, modified gravity
 E.g Mueller+ '14 Alonso+ '16

Astrophysics complicates this a bit

- Notorious "cluster optical depth"
- A catch-all term that includes our uncertainty about
 - Number density of electrons in halos associated with galaxies
 - Shape of the electron profile

$$\frac{\Delta T_{\rm kSZ}(\boldsymbol{n})}{T_{\rm CMB}} \sim \int d\chi e^{-\tau(z)} \delta_e(\boldsymbol{n},\chi) v_r$$

But I'll show that this does **not** make it impossible to do interesting cosmology with kSZ!

arXiv:1808.07445 SO Collab. produced by Victoria Calafut

Unifying Framework: Bispectrum

Smith, MM ++ 2018 arXiv:1810.13423

Kendrick Smith Simone Ferarro

Utkarsh Giri Moritz Matt Munchmeyer Johnson

Proposed estimators for kSZ have one of these forms:

- <ggT> kSZ tomography: includes
 - pairwise momentum (4)
 - template method (1)
 - velocity matched filter
 - velocity reconstruction
- <gTT> Projected kSZ (1)
- <TTTT> patchy reionization kSZ

Hand++, de Bernardis++, Soergel++, Planck++ Schaan++ 2016 Li++ '17 Deutsch++ '17, Smith,MM,Ferraro++ arxiv:1810.13423 Hill++ '16, Ferraro++ '16 Smith++ '17, Ferraro++ '18

• <ggT> **kSZ tomography**: includes

- pairwise momentum
- template method
- velocity matched filter
- velocity reconstruction

These involve "cross-correlating" a CMB survey and a galaxy survey but effectively 3-point function since 2-pt cross-correlation is zero for halos equally likely to move towards or away

- <ggT> kSZ tomography: includes
 - pairwise momentum
 - template method
 - velocity matched filter
 - velocity reconstruction

e.g Hand++, de Bernardis++, Soergel++, Planck++

- <ggT> kSZ tomography: includes
 pairwise momentum
 template method
 - velocity matched filter
 - velocity reconstruction

e.g. Schaan++

- <ggT> kSZ tomography: includes
 - pairwise momentum
 - template method
 - velocity matched filter
 - velocity reconstruction

- <ggT> kSZ tomography: includes
 - pairwise momentum
 - template method
 - velocity matched filter
 - velocity reconstruction

- An especially illuminating framework for cosmology is
 velocity reconstruction
- Cosmic velocity extracted from quadratic combination of galaxy positions (from BOSS, DESI, LSST) together with CMB temperature v ~ <gT>
- 3D Velocity reconstruction then auto-correlated and cross-correlated with galaxy survey
- The cross-correlation with the galaxy survey <vg> realizes one possible projection of the bispectrum <gv> -> <ggT>

Squeezed bispectrum cartoon: **kSZ**

Velocities from modulation of late-time patchy kSZ cross-power with galaxies

WebSky/CITA simulations

Squeezed bispectrum cartoon: **lensing**

Matter overdensity mode (zero)

Unlensed CMB temperature

Lensed CMB temperature

$$\hat{\phi}(L) = \langle TT \rangle_{\ell}$$

Squeezed bispectrum cartoon: **kSZ**

Velocities from modulation of late-time patchy kSZ cross-power with galaxies

Step 1: get reconstructed velocity

 $\hat{v}_{\rm rec}(k_L) \sim \langle gT \rangle_{k_S}$

Velocity Reconstruction Framework

- Average over quadratic pairs of modes -- effectively look for modulation of galaxy x CMB temperature power

 $\hat{v}_{\rm rec}(k_L) \sim \langle \delta_g T \rangle_{k\varsigma}$ $\sim \langle \delta_g(k_S) [\delta_e(k_S) v(k_L)] \rangle_{k_S}$ $\sim \langle \delta_g(k_S) \delta_e(k_S) \rangle_{k_S} v(k_L)$ $\sim v(k_L) \int dk_S P_{ge}(k_S)$ Cosmology **Astrophysics** Scale-independent number **b**,

$$\left[T_{\rm ksz} \sim \delta_e v\right]$$

- <ggT> kSZ tomography: includes
 - pairwise momentum
 - template method
 - velocity matched filter
 - velocity reconstruction

- An especially illuminating framework for cosmology is
 velocity reconstruction
- Cosmic velocity extracted from quadratic combination of galaxy positions (from BOSS, DESI, LSST) together with CMB temperature v ~ <gT>
- 3D Velocity reconstruction then auto-correlated and cross-correlated with galaxy survey
- The cross-correlation with the galaxy survey <vg> realizes one possible projection of the bispectrum <gv> -> <ggT>

After velocity reconstruction, we have two probes of matter density

$$v = \frac{b_v f a H}{k} \delta_m$$

With some reconstruction noise

$$\delta_g = b_g \delta_m$$

With some shot noise

How does the noise compare between velocities and galaxies? Squeezed limit noise is white Convert noise on velocity to noise on matter density with k²

kSZ Velocities outperform galaxy clustering at large scales!

kSZ tomography measures the largest scale density modes

Up to an unknown scale-independent normalization ("tau")

With much lower noise than galaxy surveys!

Both galaxy and velocity surveys are signal dominated and hence sample variance limited at large scales.

New application: primordial non-Gaussianity (f_{NL})

Munchmeyer, MM++ 2018 arXiv:1810.13424

Moritz Simone Munchmeyer Ferarro

Simone Matt Ferarro Johnson

Kendrick on Smith

Amplitude of non-gaussianity predicted generally in multi-field inflation models to be O(1)

$$\Phi_{\rm NG} = \Phi_{\rm L} + f_{\rm NL} \Phi_{\rm L}^2$$

Current best constraints: sigma(fNL) ~ 5 from Planck CMB **Exhausted by sample variance**

$\mathbf{f}_{\rm NL}$ from scale-dependent galaxy bias $\mathbf{b}_{\rm g}$

Another physical effect: **excess galaxy clustering** at large scales (Dalal++ 2008)

Galaxy surveys hope to measure bias at large scales

But constraints limited by sample variance (few modes at large scales)

sigma(fNL) ~ 1.5 forecast for LSST

sigma(fNL) < 1 interesting models ruled out

Clustering of galaxies is scale-dependent on large scales in certain multi-field models of inflation, parameterized by ${\rm f}_{\rm NL}$

Idea: ratio of (kSZ-)velocities and galaxies contains no matter field

$$v = \frac{b_v f a H}{k} \delta_m$$

With some reconstruction noise

$$\delta_g = b_g(f_{
m NL},k)\delta_m$$
 . With some shot noise

- Sample variance cancelled! Can measure bias without sample variance.
- Arbitrary improvement with CMB and galaxy survey noise improvement.
- Effectively done by measuring all auto and cross-correlations: Pgg, Pgv, Pvv
- Not affected by scale-independent astrophysics (tau) marginalization!

3x improvement in fNL from CMB-S4 kSZ + LSST

Galaxy clustering (LSST)	Galaxy clustering + kSZ velocities	
Pgg	Pgg, Pgv, Pvv	-
$\sigma(f_{ m NL})$ = 1.5	$\sigma(f_{ m NL})$ = 1.0	Simons Observatory
	$\sigma(f_{ m NL})$ = 0.5	CMB-S4

Larger improvement than similar method from CMB lensing (Schmittful, Seljak 2016) due to better correlation

3x improvement in fNL from CMB-S4 kSZ + LSST

Galaxy clustering (LSST)	Galaxy clustering + kSZ velocities	Simons Observatory CMB-S4
Pgg	Pgg, Pgv, Pvv	
$\sigma(f_{ m NL})$ = 1.5	$\sigma(f_{ m NL})$ = 1.0	
	$\sigma(f_{ m NL})$ = 0.5	

Extremely robust measurement possible -- does not need galaxy auto!

Growth rate? (f)

MM++ 2019 arXiv:1901.02418

Nick Battaglia Kendrick Smith

Jon

What about the growth rate f?

f(k,z) constrains neutrino mass, dark energy, modified gravity

Amplitude f(z) is degenerate with "optical depth" amplitude

$$v = \frac{b_v f a H}{k} \delta_m \qquad \qquad b_v \sim \int dk_S w(k_S) P_{ge}(k_S)$$

Breaking this degeneracy requires an external measurement of Pge

Breaking tau degeneracy requires predicting Pge

A data driven approach is to look for other effects that depend on **free electron density** and cross-correlate with the kSZ galaxy sample

Breaking tau degeneracy requires predicting Pge

A data driven approach is to look for other effects that depend on **free electron density** and cross-correlate with the kSZ galaxy sample

An ambitious possibility is: Dispersion measures of Fast Radio Bursts (FRBs)

Radio waves from energetic sources interact with intervening ionized matter and undergo dispersion

 $\Delta t \sim \frac{\mathrm{DM}}{\nu^2}$

Higher frequencies push past free electrons and arrive earlier

Potentially **large number** of energetic sources at cosmological distances - **FRBs**

$$DM(\vec{\mathbf{n}}) = \int_0^{\chi_f} d\chi (1+z) \delta_e(\vec{\mathbf{n}}, z)$$
$$DM(\vec{\mathbf{n}}) \times \delta_g(\vec{\mathbf{n}}) \sim P_{ge}(k_S)$$

Breaking tau with FRBs

MM, Battaglia, Smith, Sievers arxiv:1901.02418

- FRB frequency-dependence of time delay depends on intervening electron density
- One contribution is electrons in galaxies whose "optical depth" we want to measure (apart from host galaxy and Milky Way)
- Cross-correlate DMs with galaxies used in kSZ estimator

Feedback and lensing

(work in progress)

Matter power spectrum impacted by baryonic feedback

$$\delta_{m} = \delta_{\rm cdm} \frac{\Omega_{\rm cdm}}{\Omega_{m}} + \delta_{\rm gas} \frac{\Omega_{\rm gas}}{\Omega_{m}} + \delta_{\rm s} \frac{\Omega_{\rm s}}{\Omega_{m}}$$

Puffiness of gas seen in kSZ measurements

kSZ will constrain the gas (electron) profile

Which can translate to improvements on cosmology

with Emmanuel Schaan, Nick Battaglia, Simone Ferraro, Colin Hill Improvement on sigma8 from 5% constraint on electron profile parameters

Conclusion

- Optical depth (tau) factors out as **scale-independent** uncertain amplitude
- kSZ velocity reconstruction does better than clustering at large scales
- Cosmological applications
 - Improves non-Gaussianity sigma(fnl) through scale-dependent bias by 3x for CMB-S4 + LSST probing multi-field inflation
 - Amplitude of growth rate is perfectly degenerate with tau, but degeneracy can potentially be broken with localized FRB dispersion measures
 - Robustly include smaller scales in **cosmic shear** and galaxy-galaxy lensing with kSZ measurements of electron profile

Thank you!

Bonus slides

$$\hat{\phi}(L) = \langle TT \rangle_{\ell}$$

 $\langle v(k_L)\delta_g(k_S)T(\ell)\rangle$

Bonus slide: pairwise kSZ detections

Step 2: cross-correlate velocity with galaxy pos.

