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Introduction: Dynamical Probes of Dark 
Matter
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Astronomy in the 1930s
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1924 - Edwin Hubble observes proof that `faint nebulae’ 
were, in fact, other galaxies.

1929 - Edwin Hubble publishes studies 
on the distance-redshift relation.

1925 - Cecilia Payne- 
Gaposchkin discovers the 
abundance of hydrogen in 
stellar spectra.

1932 - Karl Jansky builds the first 
radio telescope



Fritz Zwicky and the Coma Cluster
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Fritz Zwicky 
1933

Coma Cluster, 
Schulman Telescope



Fritz Zwicky and the Coma Cluster
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Fritz Zwicky 
1933

Zwicky’s observation and analysis of the Coma 
cluster mass is often considered to be the first 
inference of dark matter!*†



Fritz Zwicky 
1933

Fritz Zwicky and the Coma Cluster
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Zwicky’s observation and analysis of the Coma 
cluster mass is often considered to be the first 
inference of dark matter!*†

* Kelvin (1884), Kapteyn (1922), Oort (1932)
† Not widely accepted until Rubin, Ford, and Freeman in 
the 1970s

Vera Rubin 
1970s



90 Years Later…
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Millennium Simulations

What is Dark Matter?



The Halo Mass Function (HMF)
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Increasing redshift
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Halo massMultiDark Resimulations (Kristin Riebe)

https://docs.google.com/file/d/1TRnuqDXFWHrT-yxZCZF87smzJvM3IRBO/preview


“Most massive bound structures 
in the universe”
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Here be 
dragons
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To constrain the HMF:
● Large, well-defined cluster sample
● Robust mass-measurement methods

○ Efficient and automated

Planck Collaboration et al. 2016
Here be 
dragons



Mass Measurements of Galaxy Clusters
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X-rayOptical Microwave Spectroscopic

Hot, photon-emitting 
intracluster gas

Number of galaxies 
above fixed luminosity

Scattering of CMB 
photons on intracluster 

plasma
Galaxy dynamicsLensing of 

background light

Multi-band



Dynamical Masses and The M-σ
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Assuming: spherical symmetry, 
gravitational equilibrium, identical galaxies, 
perfect selection

Fritz Zwicky 
1933



First-order stats are not sufficient to capture galaxy dynamics!
15

Previous work has investigated impacts of: 
● Dynamical substructure (Old et al. 2018)
● Halo environment (White et al. 2010)
● Triaxiality (Svensmark et al. 2015)
● Mergers (Evrard et al. 2008)
● Sample Contamination (Wojtak et al. 2018)



Dynamical Masses from Deep Learning
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Dynamical Masses from Deep Learning (Ho et al. 2019) 17

CNN2D

CNN1D
Convolutional 

Neural Network

Convolutional 
Neural Network

M200c

M200c

KDE

KDE

Our model should…
● Learn to identify features representative of cluster substructure and interlopers
● Relate these features to mass predictions in a complex manner



A Very Brief Guide to Deep Neural Networks
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Output

Deep Neural Networks
● Highly non-linear functions 

with nice gradients
● Very overparameterized 

(100,000+ parameters)



A Very Brief Guide to Convolutional Neural Networks
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Convolutional Neural Networks
(CNNs)
● Gold standard for 

image-recognition tasks
● Utilize shared feature filters in 

first layers
● Find localized patterns in 

subinputs

Input

Output

Convolutional 
layers

Dense
layers



A Very Brief Guide to Convolutional Neural Networks
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● Training feature filters:

75% Probability 
of a Smiley Face



Convolutional Networks for Cluster Mass Estimation 21

Convolutional 
layers

Dense
layers

*simplified architecture

● Trained on realistic mock 
observations using MDPL2 halos and 
UniverseMachine galaxies

Galaxy positions and 
velocities



Dynamical Masses from Deep Learning (Ho et al. 2019)

Low bias and Gaussian scatter
● Models reduce scatter of simple M-σ measurements 

by a factor of ~2.5.
● Models improve prediction scatter relative to ‘ideal’ M-

σ measurements (i.e. no selection effects) by 30%.
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Interpreting Dynamical Deep Learning 

Deep learning models learn to 
downvote interlopers and 
emphasize substructure.
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Doogesh Kodi 
Ramanah (DARK)

arXiv:2003.05951
arXiv:2009.03340



Dynamical Masses from Deep Learning (Ho et al. 2019)

Robustness

● Reduced sensitivity to 
cluster richness

Computational Efficiency

● Reduced training+inference 
time by 30x when compared 
to other ML approaches 
(SDM; Ntampaka et al. 
2015, 2016)
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Uncertainty on Deep Learning Mass 
Estimates
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Uncertainty in Deep Learning
Methods to recover deep learning uncertainties:
● Approximate Bayesian Neural Networks (Ho et al. 2020)
● Forward modeling
● Normalizing Flows (Ramanah et al. 2020)
● Simulation-based inference (Ramanah et al. 2020)
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Convolutional Neural 
Network



A Very Brief Guide to Approximate BNNs
Aleatoric uncertainty - Intrinsic scatter in 
input-output relationships

We can choose this distribution can be:
● Normal or log-normal
● Categorical
● Poisson
● Etc.
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A Very Brief Guide to Approximate BNNs
Epistemic uncertainty - Uncertainty in 
parameter settings achieved during model 
training

Sources of epistemic uncertainty:
● Insufficient training data
● Limited training time
● Inflexible model architectures
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Mass posterior Output of NN Uncertainty of 
weights

Intractable for deep neural networks!

A Very Brief Guide to Approximate BNNs



A Very Brief Guide to Approximate BNNs
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Output

Dropout Variational Inference (Gal & 
Ghahramani 2016)
● Randomly set some fraction p of weights 

to 0 during both training and inference
● Evaluate many random realizations, then 

average their outputs



Approximate Bayesian Uncertainties on Deep Learning Mass 
Estimates (Ho et al. 2020)
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Convolutional 
Neural Network

KDE

Same catalog and train/test procedures as original paper

Normal, Categorical



Approximate Bayesian Uncertainties on Deep Learning Mass 
Estimates (Ho et al. 2020)
● Model posteriors are Gaussian, even when given high flexibility. They are 

consistent with true cluster masses, with low predictive scatter and bias 
for median predictions.
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Approximate Bayesian Uncertainties on Deep Learning Mass 
Estimates (Ho et al. 2020)
● Model posteriors are well calibrated for 

mid-range mass clusters. The best 
performing models can recover within +/- 
1% of 64 and 90 percentile confidence 
intervals.

● Slight biases exist for very high/low mass 
clusters at the edges of our training set

● Epistemic uncertainties don’t necessarily 
improve our posterior calibration
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Empirical Verification
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Application to Observation - Coma Cluster
Validate our model prediction on well-studied systems
~100 galaxy spectra from SDSS above 
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Coma Cluster, 
Schulman Telescope

Fritz Zwicky 
1933



Multiwavelength Probes of Dark Matter
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Multiwavelength Measurements
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X-rayOptical Microwave Spectroscopic

Hot, photon-emitting 
intracluster gas

Number of galaxies 
above fixed luminosity

Scattering of CMB 
photons on intracluster 

plasma
Galaxy dynamicsLensing of 

background light

Multi-band

(Ntampaka et al. 
2019)

(Ho et al. 2019, 2020, 2021)
(Ramanah et al. 2020a, 

2020b)
(Gupta et al. 

2020a, 2020b) 



Multiwavelength Feature Analysis

Combining mass proxies using machine learning tools 
(LR, RFs, DTs, k-NN):

MFOF scatter of ~0.039 dex (Cohn). M200c scatter of 
~0.03 dex (Armitage) 
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Joanne Cohn (LBNL)
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Thomas J. Armitage 
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arXiv:1810.08430



Multi-Wavelength Cluster Measurements
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Cluster mass distribution
Multi-wavelength observations

Deep 
Learning



Multi-Wavelength Cluster Measurements

Deep Learning requires Big Data

● We are entering an era of large, 
high-resolution simulations

● Fast, large-volume hydrosims
○ HYPER (He et al. 2021)

● Advanced baryon pasting methods
○ Generative modeling
○ Subgrid pasting
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Conclusion
● We introduced an image-recognition based 

model for calculating cluster masses from galaxy 
dynamics (Ho et al. 2019).

● Discussed methods for measuring uncertainties 
from deep learning (Ho et al. 2020).

● Described current applications on real systems 
such as the Coma, CLASH, and HeCS clusters.

● Detailed attempts toward fully-informed 
multiwavelength mass estimators.

Matthew Ho ~ mho1@andrew.cmu.edu
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