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Galaxies are cosmic ecosystems 
•host nearly all star formation 
•forges for heavy elements 
•processing centers for cosmic gas 
•homes for black holes, transient 
events, planets 

•trace expansion and large-scale 
structure of the Universe



• When and how do galaxies of all masses and types 
form their stars?

• How do stellar & gas-phase abundances, and 
abundance patterns, vary over cosmic time?

• How can we use distant galaxies to solve big problems 
in adjacent fields, like the stellar initial mass function, 
lifetimes of rare/exotic stellar phases, cosmology, 
transient origins?
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Galaxies as Laboratories for Physics in Exotic Environments



IV: Surveys of the Future

I: State of the Field

II: A New Paradigm From 
High-Dimensional Models

III: A Million Times Faster 
with Machine Learning



20 Years Ago, Observing Galaxies in the 
Distant Universe Was a New Frontier

Fontana et al. 2004

• Relatively shallow 
survey depths 

• Restricted 
wavelength 
coverage (<1μm) 

• Strong selection 
function
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Today, The Census of Galaxies in the Universe is Nearly Mature
Surveys now provide deep, complete samples, covering ~105 

galaxies over 85% of cosmic time

Leja et al. 2020



Galaxy surveys are multiwavelength, with up to 30-40 bands of UV-IR 
photometry and well-measured redshifts
po

w
er

 e
m

itt
ed

Leja et al. 2019b

observed wavelength (μm)



Deep galaxy stellar mass functions suggest ~95% of existing stellar mass has 
been surveyed over 85% of cosmic time.

log(stellar mass)
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Ultraviolet, mid/far-infrared, and nebular emission line surveys have charted 
~75-80% of star formation over ~85% of cosmic time.
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The data are processed by fitting spectral energy 
distributions (SEDs). Take beautiful galaxy data:

… and use models to turn them into (even more 
beautiful) inferred parameters.

stellar mass 
star formation history 
nebular properties

dust content 
chemical abundances 
active black holes

The Andromeda Galaxy
Planck / NASA / ESA



Two Basic Ways to Infer Stellar Assembly from Observations

These are integral / derivative pairs
and typically inferred from ~independent parts of the EM spectrum

z=2

z=1

z=0

growth of  
stellar mass

total instantaneous 
star formation



A Universe that Doesn’t Add Up

Factor 
of 2

Leja et al. 2015

also see 
Madau+14, 
Tomczak+15, 
Contini+16, Yu & 
Wang 2016, 
Behroozi+19

The inescapable conclusion is that there exist systematic 
errors of at least a factor of 2 in the modeling



The Problem is in the Modeling

Pacifici et al. incl Leja, 2022

An model-fitting 
experiment

…identical high-
quality UV-NIR 

HST photometry…

… produce very 
different relationships 
between star formation 
rate and stellar mass!

different galaxy 
SED-fitting codes 

applied to…
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So, What Is The Path Forward?
Many different types of physics affect the observations, while data give 

limited constraints. This forces big approximations, which create systematics.

SED Parameter approximate 
effect on SED

Models must permit more variation in physical 
properties; simple models do not cover the 

complex+messy process of galaxy formation.



:: A Bayesian Galaxy SED Fitter

Johnson, Leja et al. 2021, Leja et al. 2017

Prospector is an open-source package which fits gridless stellar populations 
models to galaxy observations (spectra and/or photometry). Access to 100+ 

parameters controlling physics in galaxies.

this fit includes 18 parameters and nonparametric star formation histories



Can We Fix the Universe with Better Models?

Factor of 
2
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Fitting a Cosmological Sample

Leja et al.  
2020

I fit the photometry of ~100k galaxies from two modern galaxy surveys with Prospector
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Surprise #1: There’s a Lot More Mass in Stars



Surprise #2: There’s a Lot Less Ongoing Star Formation

normalized star formation rate (log10 
scale)
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1-10x
fewer young 

stars



Weighing Mass with the Stellar Mass Function

Leja et al. 2020

Inferred using a Bayesian hierarchical model: ensures smooth evolution, 
fit for cosmic variance directly, use full constraints on stellar mass.



An Older, More Evolved Universe

Leja et al. 2020

I find a higher cosmic stellar mass density by 0.1-0.2 dex 
(30-60%), with the derivative maximized at z~1.5.



Learning The Star-Forming Sequence Directly
I use a normalizing flow to model P(mass, star formation rate, redshift) 

directly. I perform a novel modification to incorporate measurement errors.

Leja et al. 2022



A Novel View of the Galaxy Star-Forming Sequence

Leja et al. 2022

I find that galaxies are forming stars at a rate 0.2-0.5 dex below other 
studies, with the offset peaking at 1.5 < z < 3.0.

Offset caused by higher masses and lower star formation 
rates, a natural consequence of the more extended formation 

histories found by Prospector



The Problem is the Modeling
Previously, disagreement implied systematic 2x uncertainty on the rate of 

galaxy assembly.

Leja et al. 2019b



The high-dimensional Prospector modeling creates new agreement. 
A New-found Cosmic Consensus

Leja et al. 2019b

previous work

and a considerably flatter cosmic formation history!



This Solves A Long-Standing Disagreement With Simulations

Leja et al. 2022

To match observed SFRs, previously simulations needed to invoke exotic 
forms of feedback to decouple accretion and star formation (e.g. Mitchell+14). 

This is no longer necessary.



Agreement with Full Radiative Transfer Models

Nersesian et al. 2019

Full, detailed radiative transfer models of nearby star-forming galaxies (e.g. Andromeda) 
agree with surprising new Prospector estimates of star formation rate — ‘old' stars power 

much of the UV and IR emission!



Are The New Formation Histories Reasonable?
We show average star formation histories based on position relative 

to normal star-forming galaxies (higher, equal, less, quiescent)
Previous Formation Histories Prospector Formation Histories

New histories consistent with evolution of mass function, while classic fits 
imply there should be no galaxies ~3 Gyr ago (tuniverse=7 Gyr)

Leja et al. 2019b
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The Pressing Need for Additional Speed
High-dimensional models suffer from the curse of dimensionality. This means each stellar 

pop model must be generated on-the-fly — a compute-intensive task.

This means it takes several million CPU-hours to 
analyze a typical deep extragalactic field (~105 galaxies)

What is driving the computational budget?

ga
la

xy
 o

bs
er

va
tio

ns

0.05s / model

so
lu

tio
ns

~1 million models per fit = 14 hours/
object



Training a neural net emulator to replicate stellar population synthesis 
outputs reduces model generation time by ~1000 (104 on a GPU)

Alsing, Peiris, Leja et al. 2020

Neural Net Emulation: A Promising Solution



Larger neural networks produce more accurate fluxes at the cost of increased 
execution time (<0.01 mag error with large-but-slow networks) 

So: how accurate do they need to be?

Mathews, Leja et al., ApJ submitted

Optimizing Neural Net Emulators for Inference

full stellar population synthesis



Mathews, Leja et al., ApJ submitted

parrot: As Simple as Possible, but No Simpler
We’ve built a neural net emulator (‘parrot’) for Prospector, emulating ~137 photometric 

bands. We built this many times with differing levels of accuracy to test parameter recovery.



Mathews, Leja et al., ApJ submitted

A Sufficiently Accurate Network is Indistinguishable from Full Pop Synthesis

Stellar mass shows no bias 
and ~0.1 dex dispersion

Star formation rate shows no 
bias and ~0.1 dex dispersion

~1000 randomly selected galaxies from a typical deep extragalactic survey.
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 delta log(M*) / σlogM*

We find that networks need to be 2-5x more precise than the typical observational 
uncertainty. For 5% errors in observed flux, this corresponds to a 128-node network with 

~100μs execution time (vs ~50000μs normal calculation!)

The Quest for the Simplest Sufficient Neural Network

Mathews, Leja et al., ApJ submitted

publicly available soon!



With neural net emulators, we can generate models ~500x faster than 
standard stellar population synthesis, and achieve ~10 minute/object fits.

But Wait: How Fast is Fast Enough?

Current Workflow
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~1 million models per fit = ~5 minutes/
object

~100μs / model

Simulation-based 
Inference 

using Normalizing 
Flows (~1s)

e.g., Wang, Leja, et al. 2022; see also Hahn & Melchior 2022

New Workflow
= ~1 second/

object

Not good enough: at this speed it will take ~800 million CPU-hours to fit all of 
LSST!



Specifically, use normalizing flows to learn the transformation from an N-
dimensional Gaussian to an arbitrary N-dimensional PDF

Ting & Weinberg 2021

input: (noisy) galaxy observations 
output: P(z, star formation rate, stellar mass,…)

A type of Bayesian neural network: i.e., machine learning with real uncertainties! 

This is done by simulating your data, plus noise, and the ‘truth’, many times, and 
learning the direct transformation from noisy data to Bayesian posteriors.

Simulation-Based Inference: Inside the Black Box



Everything must match the simulation — so no missing bands, no masked pixels, and 
no strong variations in noise patterns. Any objects with such properties are unfittable.

A Key Challenge: Astronomical Data is Often Weird

Wang, Leja, et al. 2022, NeuRIPS

JWST observations
Training Set
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Data Results

We’ve pioneered a technique to overcome these limitations; using internal Monte 
Carlo simulations and nearest-neighbor searches, we can now apply to objects with 

missing data,or out-of-distribution noise.

Retooling the Machinery to Fit Unusual Data
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Data Results

standard 
algorithm

Missing bands

Simulation-based inference is better calibrated (more accurate) than standard 
inference and requires fewer hyperparameters. The tradeoff is less flexibility.

Noise outside of training set

Δ(parameter)/ σparameter

Wang, Leja, et al. 2022, NeuRIPS; Wang, Leja+ ApJ in prep
Δ(parameter)/ σparameter

Now, we can fit 
everything in the sky!



2019: 1.5 million CPU-hours on Harvard’s brand-
new computing cluster

2021: A couple of weeks on a laptop with a neural 
net emulator

2023: A couple of hours on a laptop with simulation-
based inference (and more accurate)

This rapid rate of increase opens up new 
eigenvectors for scientific modeling!

Time required to analyze 50k galaxy SEDs
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LSST: 5 billion galaxies. 2025 Euclid: 50 million low-res galaxy 
spectra. 2023

Roman: survey machine,100x 
wider FOV than Hubble. 2027

(DESI/PFS): (5/30) million 
galaxy spectra. (now/2024)



Leading the galaxy modeling for UNCOVER, the deepest extragalactic observations in 
JWST’s first Cycle, designed to find first stars/galaxies. First results coming in weeks!

Formation of First Stars & Galaxies with JWST

Wang, 
Leja,et al. 
in prep



The Future: Jointly Modeling All Galaxies Across Cosmic Time
For example, LSST+Roman+Euclid overlap will provide 0.3-2um imaging plus 

1-2um spectra for 500 million galaxies

Future opportunity to model the entire population simultaneously
✴not just rare objects, but populations of them! 
✴chart mass build-up of every type of galaxy with a self-
consistent hierarchical model
✴simultaneously incorporate novel spatially resolved data

stellar mass 
function (z)

star formation 
rates(M,z)

star formation 
history(M,z)



Takeaways
With my collaborators, I have built a new discovery engine, Prospector, which 
is producing new insights into galaxy evolution. These new high-dimensional 
models already solve several long-standing problems in galaxy assembly.

Ongoing and near-future projects include:

• stellar modeling in galaxies (e.g. IMF, abundance patterns, 
isochrones, rare phases of evolution; SDSS/Keck!)

• training neural nets to perform ultra-fast fitting (e.g. emulators, 
SBI)

• building new inference tools for exquisite new data (e.g. 
spatially resolved galaxies, fast photoionization models)

• galaxy population modeling with next-gen surveys (e.g. LSST, 
PFS, Roman — let’s fit everything at once!)

Coupling to sophisticated machine-learning techniques permit new 
generations of models that are: 

• 105-106 times faster (fit the whole sky!) 
• much higher dimensionality (consider everything at once!) 
• much wider in scope of physics (what else is possible?)


