Weak Lensing Without Shape Noise

Elisabeth Krause, University of Arizona Xu et al. 2201.00739, RS et al. 2209.11811

Kinematic Lensing Team (UArizona, JPL)

Jiachuan Xu

Pranjal R. S.

Yu-Hsiu Huang

Tim Eifler

Hung-Jin Huang

Eric Huff

Maggie Smith

Elisabeth Krause

Weak Lensing

- Deflection of light by tidal field of large-scale structure causes coherent distortion, "shear".
- Weak lensing is a unique cosmological probe measuring matter distribution.
- Essential tool for cosmology and galaxy evolution studies.
- Cosmology constraints from (galaxy) lensing intriguingly low in S8...

Galaxy Weak Lensing Measurements

- Weak lensing measurements are extremely challenging:
 - intrinsic galaxy shape is unobservable, degenerate with shear
 - → shape noise $\sigma_e^2/n_{\text{gal}}$, corresponds to SNR ~ 0.01 per galaxy
 - subject to multifarious systematics.
- Kinematic measurements can break the degeneracy between shapes and shear, and raise the SNR per galaxy to ~1.
- This also eliminates the dominant lensing systematics (photo-z, intrinsic alignments).

goal: measure shear to %-level precision on individual galaxies.

Weak Lensing & Galaxy Kinematics How does kinematic information break the shape-shear degeneracy?

Sheared but face-on

Inclined but not sheared

Weak Lensing & Galaxy Kinematics Impacts of different shear components

- Define shear components in galaxy major axis frame, g_+ and g_{\times}
- The impact of g_+ on galaxy morphology and kinematic is similar to the one of a different inclination angle
- g_{\times} creates non-axisymmetric velocity distribution and offset between morphology/kinematic axes (Blain 2002)
- Need more information to constraint g_+ and inclination angle i!

Xu et al. (2022)

Weak Lensing & Galaxy Kinematics How to break the $i - g_+$ degeneracy?

 <u>Method 1</u>: cluster lensing / galaxy-galaxy lensing: get tangential direction from the closest cluster/galaxy (Morales 2006, de Burgh-Day et al. 2015a,b, Gurri et al. 2020, DiGiorgio et al. 2021)

Image Credit: NASA/HST

Weak Lensing & Galaxy Kinematics How to break the $i - g_+$ degeneracy?

 Method 1: cluster lensing / galaxy-galaxy lensing: get tangential direction from the closest cluster/galaxy (Morales 2006, de Burgh-Day et al. 2015a,b, Gurri et al. 2020, DiGiorgio et al. 2021)

 Method 2: Tully-Fisher relation (Huff, EK et al. 2013)

$$\log_{10}(v_{\rm circ}) = a + b(M_B - M_p) + \tilde{\epsilon}$$

 $\tilde{\epsilon}$ is the intrinsic Gaussian scatter of TF relation, which is around $0.05 \, dex$ (Reyes et al. 2011)

Weak Lensing & Galaxy Kinematics Breaking the $i - g_+$ degeneracy with the TFR

2.5 2.0 blue points: v₈₀ (km/s) .5 log [sin(i)] uncorrected for inclination log₁₀ .0/ ٢ 0.5 0.0 8.5 9.0 9.5

For disk galaxies, *sin(i)* determines the unlensed galaxy ellipticity. Comparing unlensed and observed shape determines the *second* shear component.

red trendline: Tully-Fisher Relation

Measurement Pipeline Slit spectrum

Simulations → Mock Data Vector

Tully-Fisher Prior

RS et al. 2209.11811

Shear Constraints MCMC

Measurement Pipeline Slit spectrum

<u>Simulations</u>

- Image and spectrum modeling based on GALSIM
- Account for sky emission, atmosphere, instrument & CCD, PSF

Fast 2D Forward Model

- Image model
 - Model the image using n = 1 Sersic profile with edge-on aspect ratio q_z
 - Apply rotation (θ_{int}) and shear (γ_+, γ_X)
- Spectrum model
 - $v(r) = v_0 + \frac{2}{\pi} v_{\text{circ}} \tan^{-1}(r/r_{\text{vscale}})$
 - Transform the velocity field to account for galaxy inclination, intrinsic P.A., and shear
 - Flexible 2D slit mask configuration

Shape Noise Estimates Slit spectrum

- Analyze synthetic DEEP2-like spectra (noiseless realization, SNR~30) with fast forward model
- Unbiased shear posteriors on noiseless data
 - fitting 11 parameters to each galaxy is not hopeless

Next: check that noise causes only scatter, not biases.

Slit spectrum

Goal: check that pixel noise causes only scatter, not biases.

Slit spectrum

Bias of measured shear as a function of inclination

Each data point averages over 20 noise realizations.

Measured vs. input shear for two galaxy inclinations $\langle m1\rangle=-0.05\pm0.06$ and $\langle m2\rangle=0.02\pm0.08$

Shape Noise Estimates Slit spectrum

 $\sigma_{c} \sim 10$ smaller than for traditional lensing! -> can afford smaller sample size/more expensive measurements

11 fit parameters:

['g1','g2','vcirc','sini','theta_int','r_hl_image' ,'r_hl_spec','vscale','v_0','I0', 'bkg_level']

6 fit parameters:

['g1','g2','vcirc','sini','theta int','I0']

Shape Noise Estimates Slit spectrum

Galaxy-Galaxy Lensing Pilot Measurement DEEP2 Slit Spectra

KL galaxy-galaxy lensing measurements for orderof-magnitude smaller lens samples than traditional WL lensing

-> precision measurements of halo masses for small lens samples, characterize environment dependence + assembly bias.

DEEP2 provides only one slit orientation per galaxy. For g-g lensing, use lens+source positions to project expected tangential shear onto slit position.

KL with Roman Space Telescope

- Why Roman Space Telescope?
 - Wide FoV: 0.281 deg^2
 - Space-quality imaging and grism data (PSF $\approx 0.13''$)
 - Moderate grism resolution $(R = 461\lambda/[1um])$
 - $2,000 \, \text{deg}^2$ overlapping imaging and grism survey in the reference design

Image Credit: NASA

KL Roman Space Telescope Can Roman grism measure disk kinematics?

• HST/WFC3 G141 (3x worse than Roman) recovers rotation velocities with a precision of $\sigma_v = 15 - 30 \,\mathrm{km/s}$

Galaxy	GLASS #1134	GLASS #399	
Cluster / field	MACS1423	MACS0717	
$M_{ m F140W}$	20.8	20.8	
Grism	Grism G102		
Emission lines	$H\alpha$	$[O III] \times 2$ rolls	
$R_{\rm kin}~({\rm kms^{-1}px^{-1}})$	700	1000	
PA (1)	4.6 ± 0.4	52.2 ± 0.4	
$z_{\rm HST}$ (2)	0.55000 ± 0.00465	1.68700 ± 0.00806	
z_{no-kin} (3)	0.55237 ± 0.00016	1.69088 ± 0.00025	
Z_{kin} (4)	0.55201 ± 0.00002	1.69175 ± 0.00006	
$v_0 \sin i$ (5)	205 ± 28	287 ± 15	
$w_0 \sin i$ (6)	242 ± 28	605 ± 32	
$A_{\mathrm{H}\alpha}(7)$	55.7 ± 2.9	-	
Аош (7) –		96.9 ± 1.5	
σ (8)	σ (8) 2.96 ± 0.15 6.38 ± 0.0		
η (9) 1.014 ± 0.012		1.048 ± 0.005	
z-score (10) 12.7		25.5	

Outini & Copin (2020)

KL with Roman Space Telescope Can Roman grism measure disk kinematics?

- HST/WFC3 G141 (3x worse than Roman) recovers rotation velocities with a precision of $\sigma_v = 15 30 \,\mathrm{km/s}$
- With the spectral resolution of Roman grism, we expect to see smaller velocity uncertainty and solid shear measurements

KL with Roman Space Telescope Galaxy sample definition

Obtained from COSMOS and CANDELS

Scenarios Definition:

KL with Roman Space Telescope Forecast result: WL v.s. KL

$KL(N_{tomo} = 10)$							
PZ+M+BA PZ+M no sys							
	38.51	47.85	59.58				
T	9017	11533	13543				

Shear Systematics

	Redshifts	Shape Measurements	
Traditional WL	photometric	low SN images	
KL spectroscopic		high SN images	

mitigated at modeling level

measure unlensed (but aligned) shape

Exploring astrophysical uncertainties

current pipeline assumptions

- Intrinsically round disk
- Smooth sersic light profile
- Cylindrical symmetric rotation curve

$$v(r) = v_0 + \frac{2}{\pi} v_{\text{circ}} \tan^{-1}(\frac{r-r_0}{v_{\text{scale}}})$$

Ongoing work

 Astrophysical scatter Shear estimates for MANGA galaxies

 TNG-mock pipeline Develop realistic galaxy mock images and spectra from hydro-sims

-- Hung-Jin Huang, Maggie Smith

 Astrophysical scatter mitigation Increase model complexity to account for hydro simulation-based kinematics

-- Maggie Smith

-- Pranjal RS

 Population-level systematics Test for environmental dependence of TF-relation in TNG

-- Yu-Hsiu Huang

TNG mocks -- mock spectra data from TNG galaxy kinematics

3D model cube

Astrophysical Biases? TFR environmental dependence

 Used TNG-100-1 to investigate the dependency of the TF relation and its scatter on the galaxy environment

$$\hat{\varepsilon}_{\text{int}} = \frac{1 - \sqrt{1 - (1 - q_z^2) \sin^2 \hat{i}}}{1 + \sqrt{1 - (1 - q_z^2) \sin^2 \hat{i}}} \qquad \sin \hat{i} = \frac{v_{\text{mag}}}{v_{\text{T}}}$$

- Find no correlation of TFR scatter with with tidal field, not an intrinsic alignment analog
 - still need to check disk thickness variations, may cause shear biases if correlated with disk orientation w.r.t. tidal field
 - other galaxy properties?

Shear Systematics

	Redshifts	Shape Measurements	Intrinsic Alignments (IA)	IA analogues	Kinematic Substructure
Traditional WL	photometric	low SN images	mitigated at modeling level	N/A	N/A
KL	spectroscopic	high SN images	measure unlensed (but aligned) shape	at most weak correlation of astrophysical scatter and tidal field(?)	accounted for by TFR scatter?

Summary

- Imaging + galaxy kinematics breaks degeneracy of intrinsic galaxy shape and shear
- 10x reduction in shape noise can compensate for reduced source density
 - Competitive cosmic shear constraints feasible even with Roman grism
- Developed and validated kinematic lensing analysis pipeline
- First galaxy-galaxy lensing measurement with DEEP2 in progress
- Ongoing work: characterize astrophysical systematics in simulations
 - find no environmental dependence of the Tully Fisher relation
 - optimize sample selection
- Design of optimal kinematic lensing surveys ongoing
 - Determine resolution requirements with targeted LBT, MMT, Palomar observations Feasibility of KL multiple fiber pointings?