Pushing the Limits of Cosmology with Next-Generation Millimeter-Wave Telescopes

Kirit S. Karkare NSF/Schramm Fellow @ University of Chicago/Fermilab Lawrence Berkeley National Laboratory, 2022-02-24

Challenge 1: Test the physics of inflation.

How:

Measure B-mode polarization in the CMB using BICEP and CMB-S4.

Calibrate instrument and control systematics with extreme precision.

Challenge 2:

Measure large-scale structure over larger volumes to test the physics of dark energy and neutrinos.

How:

Millimeter-wave line intensity mapping (LIM).

Demonstrate on-chip spectrometers with SuperSpec and SPT-SLIM.

The CMB temperature across the sky is remarkably uniform...

13

Expansion of the Universe

The Inflationary Paradigm

The Inflationary Paradigm

Inflation predicts a background of **primordial gravitational waves** imprinting **B-mode polarization** in the CMB!

The **power spectrum** quantifies the fluctuations in a map as a function of angle or length.

Natural domain for comparing observation to theory.

The BICEP/Keck Array Collaboration

Transition edge sensor bolometers held at ~250 mK, coupled to planar antenna arrays

Maximize sensitivity

South Pole superb for CMB observations:

- Low water vapor (high and dry)
- Stable atmosphere during 6-month night
- 24-hour view of observing patch

Maximize sensitivity

Measure with several frequencies to remove Galactic dust and synchrotron

Keck Array, 2011-2019

Remove lensing B modes

SPT-3G can reconstruct B modes induced by gravitational lensing

SPT lensing convergence Wu+ 2019

Calibrate Telescopes with Extreme Precision

Nonidealities in the instrument can induce false, systematic B-mode polarization that biases the *r* measurement:

Dedicated calibration campaigns needed to quantify these effects.

Beam Shape (Point Spread Function) Measurement

BK18 Foreground-Cleaned B-Mode Spectrum

BK18 *r* constraint

BICEP Collaboration, Phys. Rev. Lett. 2021

Marginalized *r* likelihood: **r < 0.036 (95%)**

Statistical uncertainty: $\sigma(r) = 0.009$

Beam Systematics Analysis

Beam shape differences leak the CMB temperature into polarization!

Use beam maps to identify beam differences and calculate/remove the systematic contribution to *r*.

BICEP Collaboration ApJ 2019 (Karkare lead)

Bias from beam systematics in BK18 is $\Delta r = 0.0015 \pm 0.0011$

...which is much smaller than the statistical uncertainty of $\sigma(r) = 0.009$
The Inflationary Landscape is Shrinking

The Inflationary Landscape is Shrinking: BK+SPT

BICEP Array + SPT-3G delensing: anticipate $\sigma(r) \sim 0.003$.

South Pole

"Ultimate" ground-based CMB experiment, ~2030-2036

Surveys from two sites to address:

- 1. Primordial Gravitational Waves and Inflation
- 2. The Dark Universe
- 3. Mapping Matter in the Cosmos
- 4. The Time-Variable Millimeter-Wave Sky

Cross critical thresholds in constraining r and light relic particles N_{eff}

2. Thermal history of the Universe and light relic particles

3. Map *all* of the mass with lensing; find all massive clusters and characterize hot gas with SZ

4. Produce transient alerts - learn about LIGO/IceCube events, GRBs, TDEs, AGNs, planets, comets, asteroids...

The Inflationary Landscape is Shrinking: CMB-S4

Models that naturally explain the deviation from scale invariance, with a characteristic scale equal to or larger than the Planck mass, predict $r > 10^{-3}$.

Large-Aperture Telescope (LAT) for delensing

18 Small-Aperture Telescopes (SATs) for deep degree-scale measurements

3 telescopes per mount

Minimize Systematics in Optical Design

We want to measure nK fluctuations on a 3 K background, from a 300 K environment!

Optimized SAT shield and baffling geometry, enabling selection of "three-tube" cryostat

CMB-S4 Org Chart

L3: Calibration for CMB-S4 Small Aperture Telescopes

Far-field chopper and mast

Fourier Transform spectrometer

Redirecting mirror

Polarization angle cal

Near-field beam mapper Amplifie

Amplified sources....and much more!

Defining calibration requirements needed for $\sigma(r) \sim 0.0005$. Equipment design and production requires *large-scale effort!* x6

CMB-S4 SAT Calibration and Systematics Plan

- 2022: Define calibration requirements for σ(r) ~ 0.0005.
 Begin designing and prototyping equipment
- 2025: Lab-based equipment needed for SAT integration and commissioning.
- 2028: Pole-based equipment needed for in situ calibration
- 2030: Survey begins. L3 role naturally transitions to systematics analysis

Immediate opportunities for systematics analysis development:

- Incorporate measured systematics into CMB-S4 simulations
- Use machine learning to analyze calibration data

NASA/WMAP Science Team

Dark Energy Accelerated expansion

5

Challenge 2:

Measure large-scale structure over larger volumes to test the physics of dark energy and neutrinos.

How:

Millimeter-wave line intensity mapping (LIM).

Demonstrate on-chip spectrometers with SuperSpec and SPT-SLIM.

Redshift z: proxy for cosmological distance

NASA/WMAP Science Team

Redshift z: proxy for cosmological distance

The Matter Power Spectrum

Li+ 2015

The Matter Power Spectrum

Why measure LSS at higher redshift?

MANY more modes available

Smaller nonlinearities, better correlated with initial conditions

Wide redshift lever arm alleviates parameter degeneracies

Karkare & Bird, PRD 2018: mm-wave line intensity mappers could test DE beyond galaxy surveys

Line Intensity Mapping (LIM)

Low resolution: integrate over many emitters while retaining large-scale information.

Observe an atomic/molecular line with a spectrometer. *The wavelength direction corresponds to redshift/distance.*

Pick a line to target: Far-IR lines in star-forming galaxies

Pick a line to target: Far-IR lines in star-forming galaxies

Carbon monoxide

5

Ionized carbon

LIM observations from 80-300 GHz would detect CO/[CII] from LSS at redshifts 0 < z < 10.

CMB instruments already make extremely sensitive mm-wave measurements of faint, diffuse fluctuations on large scales, over thousands of square degrees.

SuperSpec (Superconducting Spectrometer)

Caltech/JPL

- C. M. Bradford H. G. LeDuc
- S. Hailey-Dunsheath
- R. M. J. Janssen
- E. Kane
- J. Redford
- J. Zmuidzinas

University of Chicago

P. Barry (\rightarrow ANL) K. S. Karkare R. McGeehan E. Shirokoff

Arizona State University

S. Gordon K. Massingill P. Mauskopf

University of Colorado

J. Glenn (\rightarrow Goddard) J. Wheeler (\rightarrow NIST)

Cardiff University

S. Doyle C. Tucker

Dalhousie University

S. Chapman C. Ross

The SuperSpec On-chip mm-wave Spectrometer

TIME grating: 32 x 23 x 1 cm ~ 736 cm³ SuperSpec: 3.6 x 5.7 x 0.05 cm ~ 1 cm³

A spectrometer that retains the wide bandwidth and high sensitivity of a grating, but in a much smaller package.

A Filter-Bank Spectrometer Printed on Silicon

Fourier Transform Spectrometer (measure spectral profiles)

+ Ryan McGeehan, Calder Sheagren ...and ready to deploy!

Karkare+ J. Low Temp. Phys. 2020

The filter bank works: each channel sees a different mm-wave frequency.

Noise levels are suitable for ground-based observations.

Imminent Demonstration on the 50-m Large Millimeter Telescope

Pico de Orizaba (18,400 ft), 3rd highest mountain in NA

Sierra Negra (15,000 ft)

The South Pole Telescope

SPT-SLIM: SPT Summertime Line Intensity Mapper

Funded in 2021: Karkare co-PI of Fermilab LDRD

LIM Pathfinder using on-chip spectrometers

Observe in 2023/2024 Austral summer season

SPT-SLIM: SPT Summertime Line Intensity Mapper

Karkare+ 2111.04631

The first demonstration of LIM with on-chip spectrometers

18x dual-pol, 120-180 GHz, R=300

SPT-SLIM: SPT Summertime Line Intensity Mapper

SPT-SLIM will validate technology and observational techniques needed for LIM cosmology!

The next-generation SPT receiver (2026+) will deploy a LIM focal plane incorporating lessons learned from SPT-SLIM.

Future LIM Projections for Snowmass 2021

Spec-hrs	Example	Timescale [yr]	$\sigma(M_{\nu}) [eV]$	$\sigma(W_0)$	$\sigma(f_{_{NL}})$
10 ⁵	TIME, SPT-SLIM	1-2			
10 ⁶	TIME-EXT	4	0.047	0.03	13
10 ⁷	SPT, 1 tube	6	0.028	0.013	4
10 ⁸	SPT, 7 tubes	9	0.013	0.005	1.5
10 ⁹	CMB-S4, 85 tubes	15	0.007	0.003	0.5

Forecast constraints on neutrinos, dark energy, primordial non-Gaussianity as a function of *spectrometer-hours* (sensitivity)

Adapted from Moradinezhad Dizgah+ 2021 (incl. Karkare), ApJ in press

Telescope and Mount Focal Plane

Beams on Sky

–505 Degrees on sky

Degrees on sky

-10 -5 0 10 5 Degrees on sky

-10 0 10 Degrees on sky

–5 0 5 Degrees on sky –505 Degrees on sky –10 –5 0 5 10 Degrees on sky -10 0 10 Degrees on sky New mm-wave instruments and technologies are pushing our understanding of cosmology to the limit.

- BICEP constrains inflation to $\sigma(r) \sim 0.009$.
- CMB-S4 will limit r < 0.001, testing well-motivated inflation models.
- LIM is a promising high-redshift observable. First detections coming soon,
- but much more sensitivity is required for cosmology.

My plans:

- **CMB-S4 inflation survey calibration** ensure that *r* constraints are statistics- and not systematics-limited.
- Advance LIM with on-chip spectrometers using SuperSpec, SPT-SLIM, and future instruments.

Thank you and stay tuned!