

U.S. Department of Energy Office of Science

# 1D Lyman-alpha forest power spectrum from DESI early data

#### Dr. Naim Göksel Karaçaylı

Center for Cosmology and AstroParticle Physics (CCAPP) The Ohio State University September 8, 2023

#### Results from high-resolution spectra

- Results from DESI early data
- Metal properties through P1D

Introduction to cosmology & Lyman-alpha forest

• Plans for Y1





U.S. Department of Energy Office of Science

# Overview

P1D estimation

## Introduction



U.S. Department of Energy Office of Science

Current standard model of cosmology is based on:

- Dark energy: Accelerated expansion. What is its place in particle physics?
- Dark matter: Most of the matter in the universe. Not part of the standard model of particle physics.
- **ACDM model** is successful in explaining observations
- Beyond standard model physics



## Introduction



U.S. Department of Energy Office of Science



SDSS Galaxy Map



#### MultiDark Simulation

## Lyman-alpha forest



U.S. Department of Energy Office of Science



Image credits: NASA, ESA and J. Olmsted (STScl)

- A quasar is a very bright, distant and active supermassive black hole.
- The neutral hydrogen scatters the light emitted from quasars, which forms absorption lines.



# Distances in cosmology



U.S. Department of Energy Office of Science

 Cosmic expansion Doppler shifts both emission and absorption lines. Everything recedes, hence redshifts.

$$\lambda_{\rm obs} = (1+z)\lambda_{\rm true}$$

• 
$$z = \frac{v}{c}$$
 (Doppler shift)  
•  $v = H_0 d$  (Hubble's Law)

$$\left(d = \int_0^z \frac{c \, \mathrm{d}z'}{H(z')}\right)$$

#### **Important redshifts:**

- Now (Earth): z = 0
- Galaxies: z < 2
- Lya forest: 2 < z < 4.4

#### Power spectrum



U.S. Department of Energy Office of Science



Power spectrum quantifies the amplitude of density fluctuations.

The model (black line) agrees with the data, which spans ~10 Gyr in time and 3 decades in scale.

- T\_CMB: 370k years
- T\_Lya: 1.5 -- 3 Gyr
- T\_Galaxy: > 10 Gyr

Lya forest is sensitive to small scales.



# The sum of the neutrino masses



U.S. Department of Energy Office of Science

Palanque-Delabrouille et al. 2015

 $\sum m_{\nu} < 0.12 \text{ eV}$  (BOSS + CMB)



#### Minimum mass

- Normal hierarchy: 0.057 eV
- Inverted hierarchy: 0.097 eV

#### **DESI Forecast:**

$$\sigma_{\Sigma m_{
u}} = 0.02 \; \mathrm{eV}$$

Science, Targeting, and Survey Design: https://arxiv.org/abs/1611.00036 (2016)



### DESI by the Numbers

- DESI is a Fiber-fed multiobject spectrograph. It uses robotic control to position optical fibers onto the location of a known galaxy
- 5000 fiber positioner robots 2205.10939 on the focal plane
- 8 sq. deg. FOV
- Ten 3-channel spectrographs
- Spectra of 35 million galaxies and quasars over 14,000 deg<sup>2</sup> in five years

Credit: Mike Levi, Aug 2019



Instrument overview:

All-new



Silber et al. 2022 (2205.09014)

**Fiber View** Camera

Ten thermally-controlled **3-channel Spectrographs** 360-980 nm

DARK ENERGY

INSTRUMENT

U.S. Department of Energy Office of Science

**SPECTROSCOPIC** 



U.S. Department of Energy Office of Science

• DESI will have the statistical power to tightly constrain the sum of the neutrino masses.

$$\sigma_{\sum m_{\mathcal{V}}} = 0.02 \; \mathrm{eV}$$

- But we need to control the systematics on the measurement to realize that goal.
- Noise calibration errors, resolution correction errors...

### Lyman-alpha forest



U.S. Department of Energy Office of Science



Image credits: NASA, ESA and J. Olmsted (STScl)

#### DESI Iron TARGETID: 39627785269943777



U.S. Department of Energy Office of Science



Naim Karacayli

#### DESI Iron TARGETID: 39628488927348682





# Components of P1D Estimation



U.S. Department of Energy Office of Science

- Continuum fitting
- Masking bad/unwanted pixels
- Power spectrum estimation
  - Methods: FFT, optimal quadratic estimator
- Noise subtraction
- Resolution correction
  - Deconvolving the spectrograph window function.
- Metal power subtraction



Data

# Components of P1D Estimation



U.S. Department of Energy Office of Science

- Continuum fitting
- Masking bad/unwanted pixels
- 1. Raw power spectrum estimation
  - Methods: FFT, optimal quadratic estimator
- 2. Noise subtraction
- 3. Resolution correction
  - Deconvolving the spectrograph window function.
- 4. Metal power subtraction

$$P_{
m Lya}(k) = rac{P_{
m raw}(k) - P_N(k)}{W^2(k; R, \Delta v)} - P_{
m metal}(k)$$

 $P_F(k) = \langle \left| \widetilde{\delta_F}(k) \right|^2 \rangle$ 

 $P_{\rm raw}(k) - P_N(k)$ 

 $P_{\rm raw}(k) - P_N(k)$ 

 $W^2(k; R, \Delta v)$ 

 $P_{\rm raw}(k)$ 

- Theoretically optimal.
- Robust against Lyα specific challenges: gaps, continuum errors, non-uniform noise
- Computationally expensive\*
- Occasional convergence problems.
- \* 0.5 Node hours for EDR

Note  $\mathbf{C} = \mathbf{C}(P(k))$ . Solve for  $\frac{\partial \mathcal{L}}{\partial P_{k}}(\widehat{\boldsymbol{P}}) = 0$ . Newton-Raphson iterative solution:

$$\widehat{P}_{k}^{(i+1)} = \widehat{P}_{k}^{(i)} - \sum_{k'} \left\langle \mathcal{L}_{,kk'} \right\rangle^{-1} \Big|_{\widehat{P}^{(i)}} \mathcal{L}_{,k'}(\widehat{P}^{(i)})$$

 $2\mathcal{L} = \boldsymbol{\delta}_{F}^{T} \mathbf{C}^{-1} \boldsymbol{\delta}_{F} + \ln \det \mathbf{C}$ 

Stack all spectra into one vector:

$$\widehat{P}^{(i)} \mathcal{L}_{,k'} (\widehat{P}^{(i)})$$

$$\delta_F = \begin{pmatrix} \delta_F^1 \\ \vdots \end{pmatrix}$$



U.S. Department of Energy Office of Science

Likelihood:



U.S. Department of Energy Office of Science

# A detour to high-resolution spectra

# DESI vs KODIAQ



U.S. Department of Energy Office of Science

DESI:

- Low Medium resolution
- 450,000 quasars (Y1 Lya sample)

**KODIAQ:** 

- 15 x DESI resolution
- 300 quasars
- Continuum is easier to fit



# DESI vs KODIAQ



U.S. Department of Energy Office of Science

DESI:

- Low Medium resolution
- 450,000 quasars (Y1 Lya sample)

**KODIAQ:** 

- 15 x DESI resolution
- 300 quasars
- Continuum is easier to fit



# Application to high-resolution quasars

- KODIAQ/HIRES
  - 300 quasars with R > 36,000
- SQUAD/UVES
  - 467 quasars with R > 40,000
- XQ-100/X-shooter
  - 100 quasars with R ~ 6,000

(DESI R ~ 3,000)

Total of **538** unique quasars.





### Results





U.S. Department of Energy Office of Science

Power increases with redshift because more HI at higher z.

Karaçaylı et al. 2022, MNRAS, 509, 2842

## Results





Karaçaylı et al. 2022, MNRAS, 509, 2842

## Statistical power



U.S. Department of Energy Office of Science

 A crude Fisher forecast analysis for warm dark matter mass using transfer function in Bode et al. (2001) assuming m<sub>x</sub>=4 keV.



## Improves DESI constraints



U.S. Department of Energy Office of Science



Credit: Andreu Font-Ribera  $n_*$ : Slope  $\Delta^2_*$ : Amplitude, of the linear power spectrum



U.S. Department of Energy Office of Science

# Back to DESI

#### DESI Iron TARGETID: 39628488927348682





# Two DESI challenges



U.S. Department of Energy Office of Science

 Signal is buried under noise. Accuracy of noise calibration is crucial.



2. Spectrograph resolution is comparable to thermal broadening.



# DESI EDR Lya P1D



U.S. Department of Energy Office of Science

#### • Data

- No SV1 and SV2.
- Removed quasars with BALs.
- Paper outline
  - Method Optimal quadratic estimator
  - Validation Tests on 1D and 2D simulations
  - Systematics
  - Results

| 1% Survey (SV3)  | 7,173  |
|------------------|--------|
| Main (Guadalupe) | 47,427 |
| Total            | 54,600 |

# Mock spectra for validation



U.S. Department of Energy Office of Science



- Lognormal flux field with realistic power spectrum
- Uncorrelated in 3D

+ Quasar continuum+ Instrument resolution+ Noise



# Validation – Tests on 1D simulations

(quickquasars)



Karaçaylı et al. 2023, arXiv:2306.06316

# Validation – Tests on 2D simulations



U.S. Department of Energy Office of Science

Spectral extraction is the process of turning a 2D image into N 1D spectra.

#### Raw data (credit: Stephen Bailey)



#### **Simulations**



#### With

- Paul Martini
- Julien Guy

## Resolution matrix



U.S. Department of Energy Office of Science

- 45 000 quasars, only B arm
- Uniform redshift distribution between 2.6 and 3.6

$$\delta_{\rm obs} = \mathbb{R} \, \delta_{\rm model}$$



Karaçaylı et al. 2023, arXiv:2306.06316

# Recalibrate noise estimate



- Bin spectrum pixels with respect to reported pipeline variance.
- Compare the observed variance to pipeline variance.

$$\sigma^{2}(\lambda_{p}) = \eta(\lambda_{p})\sigma_{\text{pipe}}^{2}(\lambda_{p}) + \sigma_{\text{LSS}}^{2}(\lambda_{p})$$

- Pipeline noise correction, eta
- Large-scale structure variance



# Recalibrate pipeline noise estimate



U.S. Department of Energy Office of Science

#### Noise calibration correction



#### SNR dependence of this correction



Karaçaylı et al. 2023, arXiv:2306.06316

## Systematics





## Effects on parameters

![](_page_37_Picture_1.jpeg)

U.S. Department of Energy Office of Science

|                     |             | Increase in error |               |                |  |
|---------------------|-------------|-------------------|---------------|----------------|--|
| Need work for       | Systematics | A                 | n             | α              |  |
| Year 1 to take full | Noise       | 49.8%             | 6.9%          | 0.7%           |  |
| advantage of        |             | 34.0%<br>0.9%     | 89.1%<br>2.8% | 26.5%<br>30.5% |  |
| data!               | All         | 74.3%             | 99.9%         | 62.5%          |  |
|                     |             |                   |               |                |  |

**Table 2.** Percentage increase in error given by the minimizer for each systematics at z = 2.8. The precision of the amplitude A is nearly equally affected by noise and resolution systematics, whereas for n, it is thoroughly affected by resolution systematics.

$$P_{\text{base}}(k) = \frac{A\pi}{k_0} \left(\frac{k}{k_0}\right)^{2+n+\alpha \ln k/k_0}$$

Karaçaylı et al. 2023, arXiv:2306.06316

Comparison with eBOSS, FFT

Good agreement with the FFT result, which is on similar data and a different analysis pipeline!

![](_page_38_Figure_2.jpeg)

![](_page_39_Picture_0.jpeg)

U.S. Department of Energy Office of Science

# Metals properties through P1D

# What is in the side bands?

![](_page_40_Picture_1.jpeg)

![](_page_40_Figure_3.jpeg)

# What is in the side bands?

![](_page_41_Picture_1.jpeg)

U.S. Department of Energy Office of Science

![](_page_41_Figure_3.jpeg)

- Strong metal transitions such as C IV, Si IV and Mg II.
- They have a clear signal in DESI power spectrum!
- Most common method in literature is identification using high-resolution, high-SNR spectra.

![](_page_41_Figure_7.jpeg)

Karaçaylı et al. 2023, MNRAS, 522, 5980

# Metal abundance model

![](_page_42_Picture_1.jpeg)

U.S. Department of Energy Office of Science

We can analytically describe metal P1D using three quantities:

- Abundance (column density distribution)
- Temperature (effective Doppler parameter)
- Clustering (cloud-cloud correlation function)

$$\langle K_{\rm tot}K_{\rm tot}\rangle = \sum_i \langle K_iK_i\rangle + \sum_{i\neq j} \langle K_iK_j\rangle.$$

K is the absorption profile.

![](_page_42_Figure_9.jpeg)

# Metal abundance model

![](_page_43_Picture_1.jpeg)

U.S. Department of Energy Office of Science

We can analytically describe metal P1D using three quantities:

- Abundance (column density distribution)
- Temperature (effective Doppler parameter)
- Clustering (cloud-cloud correlation function)

$$\begin{split} \xi_{1a}(v) &= \int dN_i f(N_i) \int dv' K_i(v') K_i(v'+v) \\ \xi_{2a}(v) &= \int dN_i dN_j f(N_i) f(N_j) \\ &\times \int dx dv' K_i(v') K_j(v'+x+v) \xi_{cc}(x;N_i,N_j), \end{split}$$

![](_page_43_Figure_8.jpeg)

# Metal abundance model

![](_page_44_Picture_1.jpeg)

U.S. Department of Energy Office of Science

![](_page_44_Figure_3.jpeg)

Karaçaylı et al. 2023, MNRAS, 522, 5980

Naim Karacayli

# Time evolution of ion abundance

![](_page_45_Picture_1.jpeg)

U.S. Department of Energy Office of Science

![](_page_45_Figure_3.jpeg)

We can investigate time evolution of abundance (column density distribution).

$$f(N) = 10^{-12.7+A} \left(\frac{N}{10^{13} \,\mathrm{cm}^{-2}}\right)^{-1.8}$$

![](_page_45_Figure_6.jpeg)

![](_page_46_Picture_0.jpeg)

U.S. Department of Energy Office of Science

# Plans for Y1

# Plans for Y1

![](_page_47_Picture_1.jpeg)

U.S. Department of Energy Office of Science

#### 450,000 Lya quasars! -> More work into systematics

We identified possible solutions to noise and resolution systematics.

- + DLA finder.
- + Mask BAL features and recover those spectra.
- + Version control.
- + Coordination with FFT.

Other projects for Y1:

- CMB lensing x P1D
- Repeat metal model analysis
   GPUs

# Noise calibration SNR dependence

![](_page_48_Picture_1.jpeg)

![](_page_48_Figure_3.jpeg)

$$\sigma^2(\lambda_p) = \eta(\lambda_p)\sigma_{\text{pipe}}^2(\lambda_p) + \sigma_{\text{LSS}}^2(\lambda_p)$$

- ~ 1 million quasars in Y1 for eta analysis
- Quantify eta in multiple SNR bins  $\eta = \eta(\lambda, \text{SNR})$

## **Resolution systematics**

![](_page_49_Picture_1.jpeg)

![](_page_49_Figure_3.jpeg)

Model fit to ARC lamp exposure vs true PSF

- Accurately quantify the bias due to model with more simulations.
- (Difficult) change the model.
- Can be helpful in noise calibration errors too.

## Summary

![](_page_50_Picture_1.jpeg)

- DESI will have the statistical power to tightly constrain the sum of the neutrino masses.  $\sigma_{\Sigma m_{
  m V}} = 0.02~{
  m eV}$
- P1D from DESI EDR+ (54,600 quasars).
- We identified the major systematics error sources, noise and resolution. The systematics are comparable to statistical errors.
- There is a plan to reduce these errors.

![](_page_51_Picture_0.jpeg)

#### DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

![](_page_51_Picture_3.jpeg)

We are honored to be permitted to conduct scientific research on Iolkam Du'ag (Kitt Peak) in Arizona, a mountain with particular significance to the Tohono O'odham Nation.

# Thanks to our sponsors and 69 Participating Institutions!

Vaim Karacayli