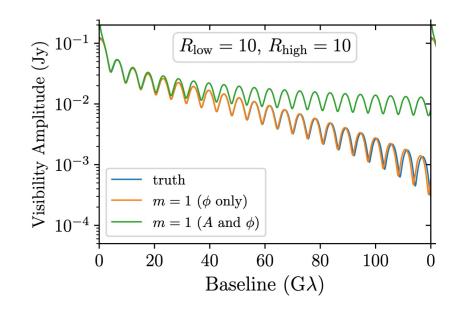
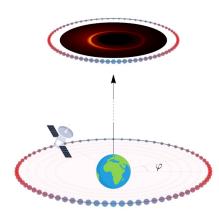
Simulation-Based Inference With Quantile Regression

He Jia (贾赫) Princeton University Apr 9, 2024 @ Berkeley

About Me

- I was a visiting undergrad with Uros a few years ago
- I'm now a 4th year grad student, working on BHs (with Eliot Quataert) for my thesis (how to measure e.g. the spin of M87*)
- But I'm still working on cosmology (with David Spergel) when I can find time
- Today I want to advertise a new SBI method for cosmology
- I will stay here for the rest of the week





Gralla et al, 2008.03879; Jia et al, to be submitted

Simulation-Based Inference

- Simulation-Based Inference (SBI), aka Likelihood-Free Inference (LFI), Implicit-Likelihood Inference (ILI)
- Given the model parameters θ and simulated data x
- For example, θ is (Ω_m, σ_8) , x is the weak lensing map
- SBI: fits *something* in Bayes' theorem $p(\theta|x) p(x) = p(x|\theta) p(\theta)$ with Neural Networks (NN)

Simulation-Based Inference

- SBI: fits something in Bayes' theorem p(θ|x) p(x) = p(x|θ) p(θ) with Neural Networks (NN)
- Neural Posterior Estimation (NPE): fits posterior $p(\theta|x)$ with Normalizing Flows (NF)
- Neural Likelihood Estimation (NLE): fits likelihood $p(x|\theta)$ with NF
- Neural Ratio Estimation (NRE): fits the ratio $\frac{p(\theta, x)}{p(\theta)p(x)}$ with NN
- NEW: Neural Quantile Estimation (NQE)

Why NOT SBI? Your SBI can be biased because...

- You have the *correct* simulator, your simulation budget is limited
- You have the *correct* simulator (e.g. Illustris) and a fast emulator (e.g. n-body), you can only afford to run many simulations with the fast emulator
- You have a fast emulator, you assume the *correct* simulator is among several candidates (e.g. within CAMELS)
- You do not know what the *correct* simulator is at all
- Our new NQE method helps in the first three scenarios!
- Guaranteed to be unbiased if you have 500-1000 runs from the correct simulator, regardless of the dimensionality of the problem

Neural Posterior Estimation (NPE)

- NPE: fits posterior $p(\theta|x)$ with Normalizing Flows (NF)
- NF: a special NN, for each *x*, outputs a bijective transformation between *p*(*θ*|*x*) and Gaussian

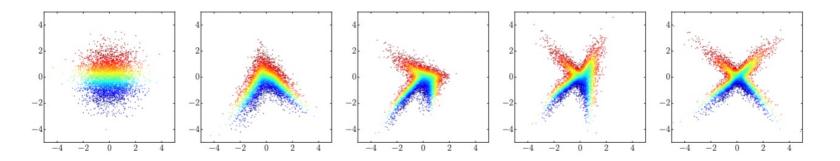
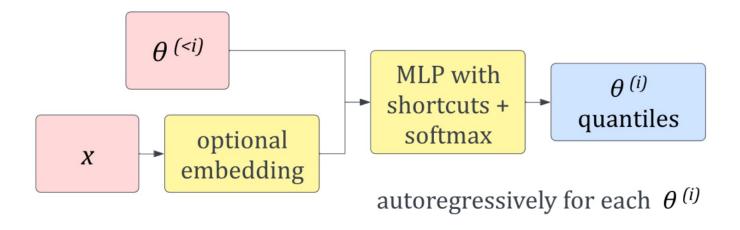


Figure 1: Example of a 4-step flow transforming samples from a standard-normal base density to a cross-shaped target density.

Papamakarios et al, 1912.02762

Neural Quantile Estimation (NQE)

- Learns quantiles for each 1-dim conditional $p(\theta^{(i)}|\theta^{(j<i)}, x)$
- Autoregressive structure: $p(\theta|x) = p(\theta^{(1)}|x) \times p(\theta^{(2)}|\theta^{(1)}, x) \times \cdots$
- L2 loss => mean ; L1 loss => median ; weighted L1 loss => arbitrary quantiles



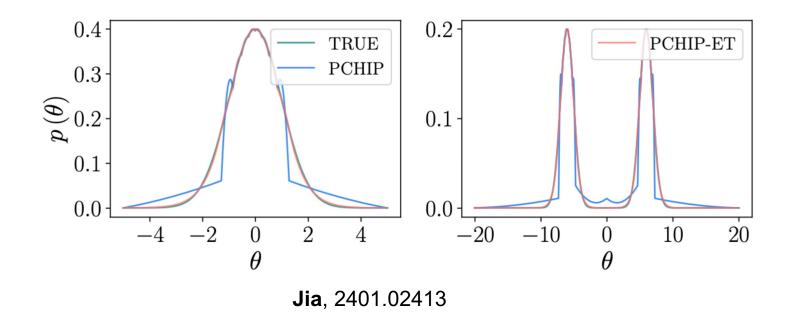
Neural Quantile Estimation (NQE)

- WL example: weak lensing map => $CNN => \Omega_m$
- With L1 loss \rightarrow median of Ω_m posterior
- With L2 loss \rightarrow mean of Ω_m posterior
- With weighted L1 loss \rightarrow arbitrary quantiles of Ω_m posterior
- We can reconstruct a 1-dim distribution with ~15 quantiles

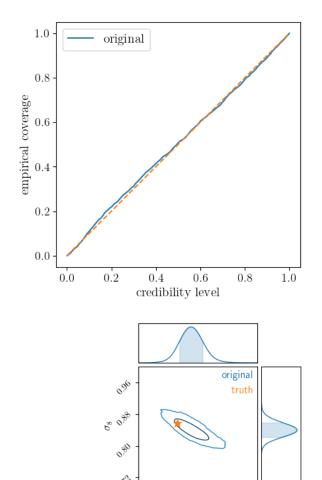
$$\mathcal{L}_{\tau}[\theta, F_{\phi}(\mathbf{x})] \equiv (\tau - 1) \sum_{\theta < F_{\phi}(\mathbf{x})} w(\mathbf{x}) \left[\theta - F_{\phi}(\mathbf{x})\right] + \tau \sum_{\theta > F_{\phi}(\mathbf{x})} w(\mathbf{x}) \left[\theta - F_{\phi}(\mathbf{x})\right].$$
(1)

Neural Quantile Estimation (NQE)

- We interpolate the CDF, which should be monotonic and continuous
- Piecewise Cubic Hermite Interpolating Polynomial with Exponential Tails (PCHIP-ET)
- Perfectly reconstructs a 1-dim distribution with ~15 quantiles



- Why NQE? NQE can be easily calibrated to be unbiased
- Does your α % credible region really contain α % of the truth?
- Empirical Coverage: the probability of the truth to fall within the α% credible region
- Above diagonal => over-conservative, below diagonal => biased
- The Bayesian optimal posterior has "diagonal" coverage, but the opposite is not always true
- The goal: "diagonal" > "above diagonal" > "below diagonal"

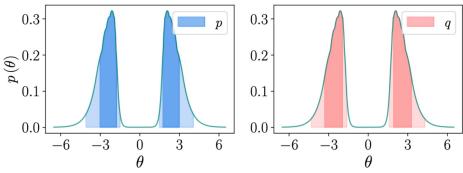


0.36 0.42 0.48

0.24 0.30

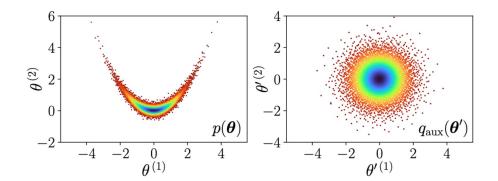
How to define credible regions?

- For a 1-dim distribution, the 68% credible region is...
- (Standard definition) the 68% samples with largest posterior, need to sample many θ for each x to get the rank of p(θ|x)
- (Alternative definition) between 16% and 84% quantiles of the distribution, directly from CDF
- Multimodal distribution: local CDF within the peak



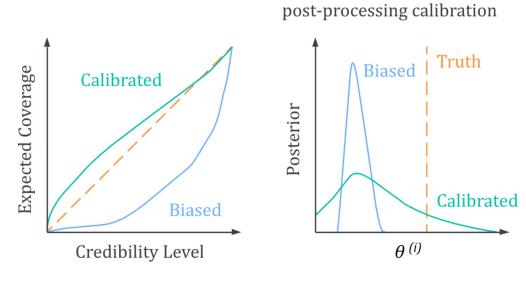
How to define credible regions?

- Multimodal distribution: local CDF within the peak
- Multidimensional distribution: map 1-dim conditional quantiles to Gaussian, then use the rank of Gaussian PDF (calculated analytically)
- Advantages: similar results, orders of magnitude faster to evaluate, exclusive to NQE

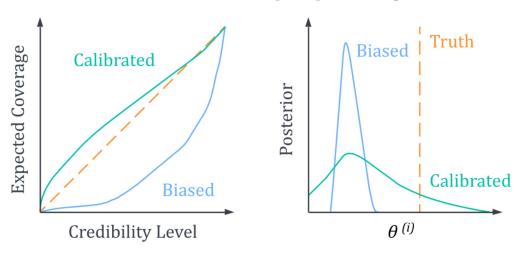


	coverage	simulations	network calls
NQE	${m q}$	$oldsymbol{N}_o$	$\mathcal{O}(N_o)$
NQE	p	N_o	$\mathcal{O}(N_i N_o N_r)$
NLE	p	N_o	$\mathcal{O}(N_i N_o N_r N_m)$
NPE	p	N_o	$\mathcal{O}(N_i N_o N_r N_m)$
NRE	p	N_o	$\mathcal{O}(N_i N_o N_r N_m)$

- Biased posterior: posterior is too narrow to cover the truth
- Simple fix: make the posterior broader by post-processing

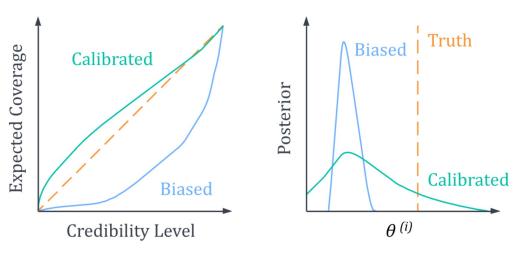


- Only 1 parameter to learn: fix the 1-dim conditional medians, expand all other quantiles by a common "broadening factor"
- Can be done as long as you can accurately calculate the coverage



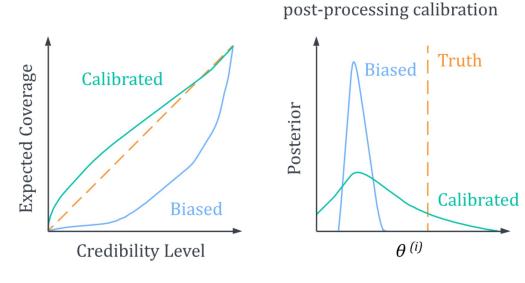
post-processing calibration

- Errorbar of coverage can be estimated with the Binomial distribution
- <1.6% with 1000 simulations, regardless of dim x and dim θ
- In other words, you can always make your estimator unbiased, with 1000 simulations

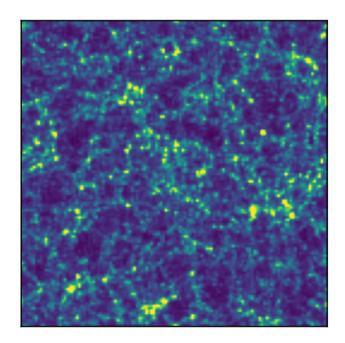


post-processing calibration

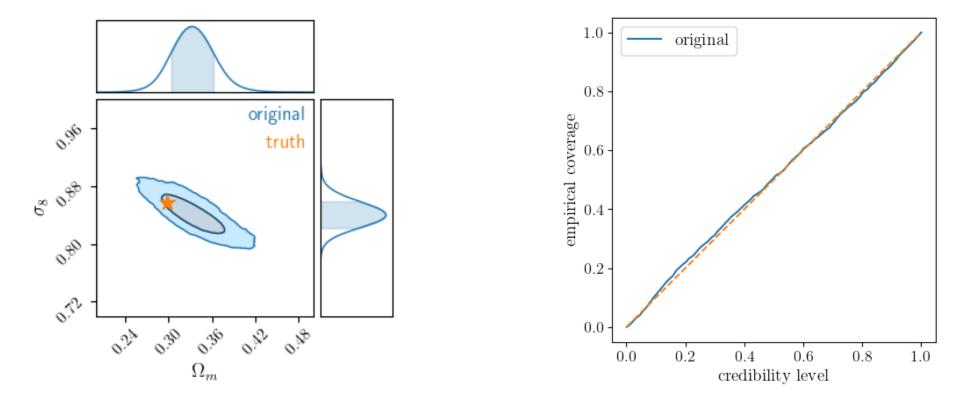
- The global "broadening factor" guarantees unbiasedness, but can be suboptimal
- We will see a better way to do the calibration in a few minutes (with a WL example)



- Infer (Ω_m , σ_8) from projected 2-dim density fields
- PM as forward simulator
- Modified ResNet as embedding network
- Field level SBI with NQE
- Can also be applied to summary statistics

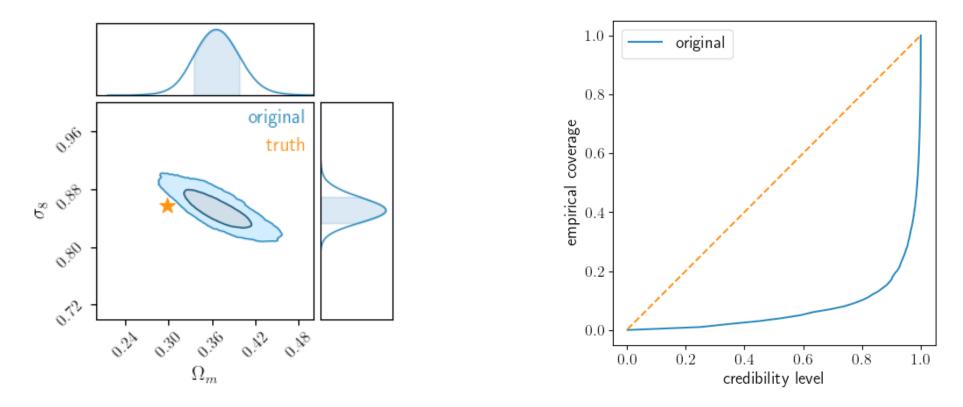


• Trained on PM, applied to PM → seems to work well!

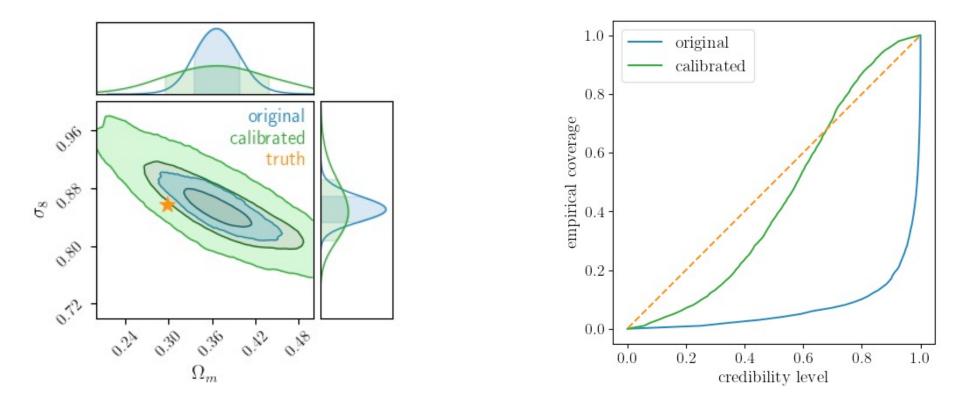


- Trained on PM, applied to "hydro"
- NB: as a proof-of-concept example, I'm not doing real hydro here
- It's actually PM with scale-independent bias b=1.02

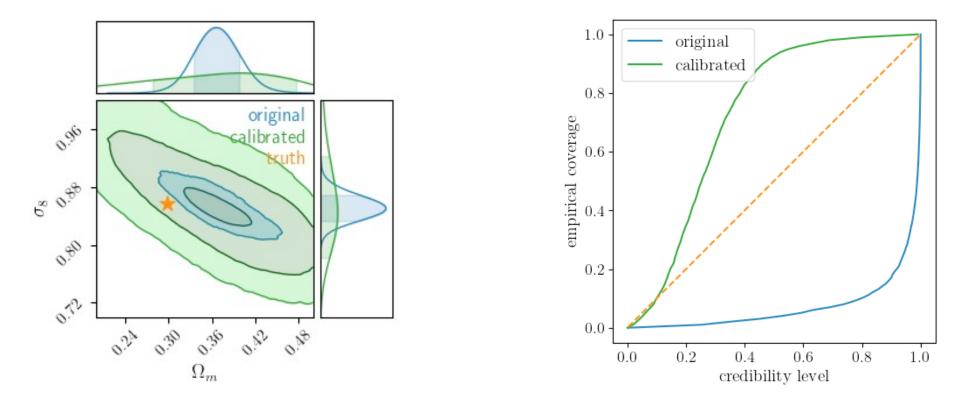
• Trained on PM, applied to "hydro" → posterior is biased!



• Trained on PM, applied to "hydro", calibrated at 68% and 95%

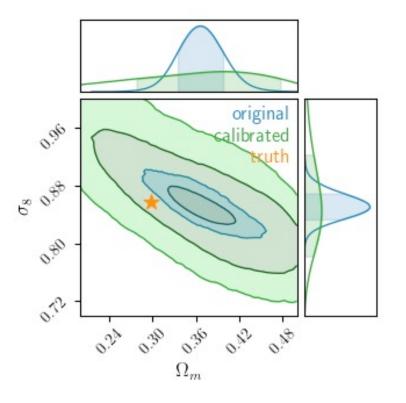


• Trained on PM, applied to "hydro", calibrated at 10%, 50% and 90%



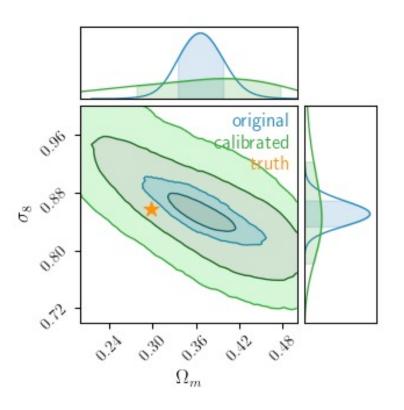
Better Way to Calibrate

- The isotropic broadening removes the bias, but also makes the posterior toooooo broad
- If we know the truth tends to be at one direction, we do not need to broaden the posterior in the other direction
- There is a cleverer way to do the calibration, possible (and only possible) with NQE

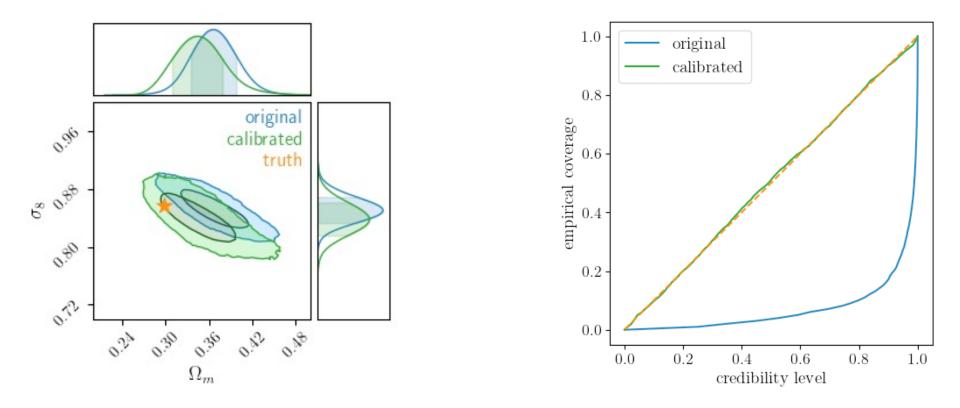


Better Way to Calibrate

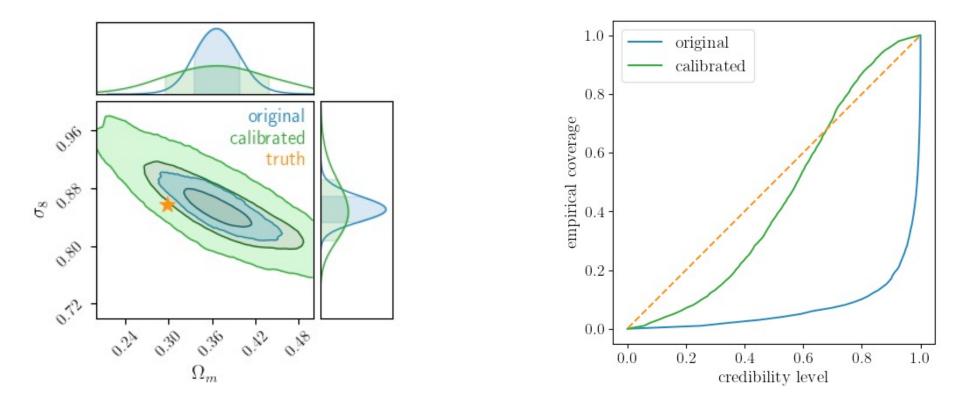
- There is a cleverer way to do the calibration, possible (and only possible) with NQE
- For each $\theta^{(i)}$ dimension, and for each quantile τ
- We compute the residual between the true $\theta^{(i)}$ and the predicted τ -th quantile
- The τ -th quantile of this residual (over all mocks) should be 0
- If not, we can correct the posterior by shifting the predicted quantile (same shift for all mocks)



• Trained on PM, applied to "hydro", calibrated at all levels

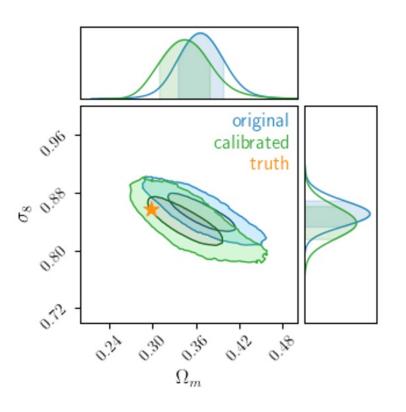


• Trained on PM, applied to "hydro", calibrated at 68% and 95%



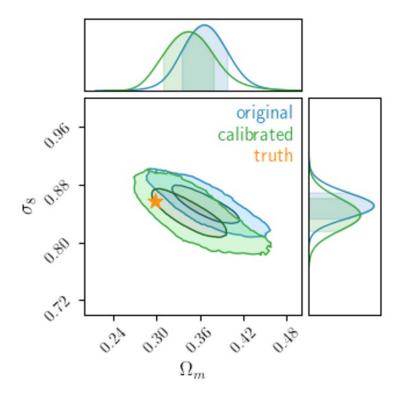
Better Way to Calibrate

- Effectively, I'm averaging the posterior bias over all mocks
- This is optimal, if and only if the inferred posterior is always biased (relative to Bayesian optimal posterior) in the same way
- Otherwise, some information is lost
- However, you only need 500-1000 *correct* simulations (with which you want to calibrate NQE) to do this



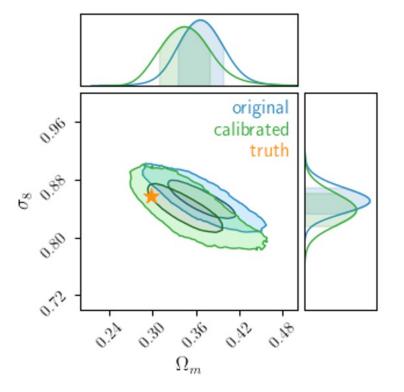
Better Way to Calibrate

- This is only possible with NQE
- NQE predicts global information (quantiles) of the posterior: you know why your posterior is biased
- Existing methods like NPE predicts only local information (the PDF of the posterior)



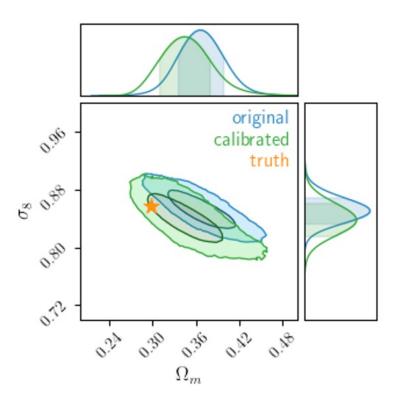
Possible Applications (Emulators)

- A more direct way to evaluate how good the emulator is: how much calibration is required to remove the bias?
- To do inference, emulators do not need to be perfect
- Better emulators lead to more optimal posteriors
- Bias can always be removed with calibration



Possible Applications (Baryon Uncertainties)

- What do you do if you find your SBI results different on different hydro simulations?
- Before: manually pick some subset of observables that are less sensitive to the hydro models
- Now: accept it, train your SBI on some baseline model, then calibrate it against all the other hydros
- Explicitly marginalizing over baryon uncertainties in the posterior space



Thanks & Questions?

- Neural Quantile Estimation (NQE), a new SBI method
- Guaranteed to be unbiased if you have 500-1000 runs from the *correct* simulator
- Code is public on GitHub (h3jia/nqe), although no documentation yet
- ML methodology paper: 2401.02413
- Let me know if you want to try it on your examples!