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Weak lensing and the S8 tension

Analytical vs Deep learning methods for mass mapping
Results from three-point correlations

Wavelets and Higher Order Statistics

Topics in Simulation Based Inference (SBI)



The Sg tension and cosmic puzzles

The Ss tension: Growth of large-scale structure in the universe is slower than predicted
using the baseline model of cosmology, ACDM, to extrapolate early time measurements
with the CMB to the present.

How serious is the Sg tension?

The Sgtension shows up in multiple lensing, galaxy clustering and cross-correlation
measurements but only at ~2-sigma. CMB lensing and DESI P(k) currently show no Ss
tension.

| will not discuss other possibly more interesting cosmic puzzles:
The Ho tension: The universe is expanding faster than ‘predicted’.

Evolving dark energy and the phantom crossing.



Dark Energy Survey mass map
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Lensing mass map: DES Y3, 10 percent of the sky, 100 million galaxies.
DES Year 6: similar footprint on the sky, ~¥2x as many galaxies.



Structure mismatch — the Sg tension

N~
[§)
105 - DES Y3 Cg ‘Zl
_ Sims at Planck 2018 =
= 10t =
E g‘: 1024 —— Dark matter-only
g 103 Y —— Dark matter and baryonic feedback
RN _
Q 0
—_—
10! -25
5o ACT
05
|
S
D.:’g 0.0 . DES . . |
~
< .
a 0
—05 s
10-3 10-2 10-1 10° 10! 102 50t ACTH DEE)._I - |
k [h/Mpc]

k [hMpc~1]

Reconstructing P(k,z)
Up to k~1 h/Mpc, DES requires a lower S8 within LCDM

At higher k we see additional suppression.
Doux, BJ+ (DES) 2022; Sarmiento+ 2025



Structure mismatch — the Sg tension

Predicted by theory Inferred from lensing data

How can we compare these maps, using all the information they contain?



The non-Gaussian regime

“ Beyond 2-point functions is where the action is in WL. A partial list of
Higher Order Statistics (HOS):

* 3-point correlations

* PDF/CDF

* Wavelet based statistics

+ Peak statistics

* Clusters and voids

+ Minkowski functionals

“ Persistent homology

+ Field level inference with DL or BHM

* The “ultimate’ HOS paper? Euclid Paper XXVIII - a cautionary tale



o Analytical vs Diffusion models for mass mapping



Analytical Lensing Maps
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Fast Generation of Weak Lensing Maps with Analytical Point
Transformation Functions

Kunhao Zhong, Gary Bernstein, Supranta S. Boruah, Bhuvnesh Jain, Sanjit Kobla

Nonlinear cosmological fields like galaxy density and lensing convergence can be approximately related to
Gaussian fields via analytic point transforms. The lognormal transform (LN) has been widely used and is a
simple example of a function that relates nonlinear fields to Gaussian fields. We consider more accurate
General Point-Transformed Gaussian (GPTG) functions for such a mapping and apply them to convergence
maps. We show that we can create maps that preserve the LN's ability to exactly match any desired power
spectrum but go beyond LN by significantly improving the accuracy of the probability distribution function
(PDF). With the aid of symbolic regression, we find a remarkably accurate GPTG function for convergence
maps: its higher-order moments, scattering wavelet transform, Minkowski functionals, and peak counts

match those of N-body simulations to the statistical uncertainty expected from tomographic lensing maps of
the Rubin LSST 10 years survey. Our five-parameter function performs 2 to 5X better than the lognormal. We
restrict our study to scales above about 7 arcmin; baryonic feedback alters the mass distribution on smaller
scales. We demonstrate that the GPTG can robustly emulate variations in cosmological parameters due to the
simplicity of the analytic transform. This opens up several possible applications, such as field-level inference,
rapid covariance estimation, and other uses based on the generation of arbitrarily many maps with laptop-
level computation capability.



Kappa maps via inverse Gaussianization

N-body map Double_Exp_Lin map
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We can pick up some subtle differences by eyes, but ~all statistical tests pass at the
LSST level. Applications follow from the ability to generate millions of ‘analytic’ kappa
maps on a laptop

- Aid SBI in various ways
- Fine tune CNNs and ViTs

- Embedding vector for cosmological maps <-> physical parameters of the theory o



Lognormal transform
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Write the observed field Y in terms of a
Gaussian variable x~N(0,1) 101 -

Y=Exp[x]
The PDF of this non-gaussian variable Y is

Known as Log-Normal distribution:
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General Point-Transformation:

o ‘Converting’ a general PDF to a
Gaussian PDF can be done by CDF

matching, or:

G(ysim) = ppfnorm (Cdf()’sim))
= V2erf™! (2cdf (ysm) — 1),

o Log-Normal models the nonlinear-
linear curve as a straight line in log

space, but it has significant curvature.

o Two straight lines? Close!
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Accurate PDFs

e With 4-5 parameters, the PDF 107 mbody
| gaussian
can be fit very well deep into the 10 4 Log-Norm

3-parameter model
4-parameter model
5 parameter model

100ooo

tails 1o°-;

 The power spectrum is ‘exactly’ 1011
matched ot |

e All HOS match to within LSST 10-3-;
accuracy! |
(above ~5 arcminutes)

PDF

1074 4

0.20
e 3rd moments

e Peaks

Name Point Transform Function Features

e Wavelets: ST1, ST2

: The PDF and relation of correlation functions
inv — a2 _
LN(G3") Bexplax —a®/2) - B to the Gaussian field are analytical.

Best function suggested by Symbolic Regression.

L M | N kOWS kl fU n CtIO Nna IS Gi3'“' n (e‘”‘_az/2 +bx + c) -1 Fits individual tomographic bins,

but failed to model cross-bin correlations.

) 5 (ar-ar)/t Functional form motivated by the limiting
Gy ne1x=ai/2 (1 +e(x—x0)t ) -1 behavior of Gaussianization curve, previously tested
on density shells with Quijote simulations [97].

) ) (ar-ay)/t Functional form that combines the two functions above.
GJv n (e‘”x —ai/2 4 bx) (1 + e("""O)’) -1 The two tails are flexible enough to accurately
model the x maps with different cosmology.
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ST1

Residuals
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How good is the analytical mass map?
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Predicted vs Simulation scattering transform: percent level agreement.

Gray band - expected LSST uncertainty bands.

PDF, Moments, peak counts, Minkowski functionals — within LSST uncertainty
though there are deviations above simulation error bars.
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Why another (mediocre) emulator?

5 parameter fits can be easily generalized:
interpolate in parameter space; extended
cosmo models; avoid overfitting...).

e Interpolation is one of the many hidden

issues with SBI.

Rapid covariance estimation —

Og

Pretraining CNNs and ViTs
Transfer learning

Various ways to aid SBI/FLI
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* When you start a Machine Learning project, you may end
up writing an ‘anti-ML" paper



Diffusion — the main 1idea

Progressively add noise to the image until we just have white noise
(We completely control this step via a Stochastic Differential Equation)

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

Slide from Supranta Bouruah



Why ditfusion 1s usetul for generative modeling?

Important result: Any SDE of this form can be reversed!

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

Reverse stochastic differential equation requires the gradient of the log probability, a.k.a score
Train neural networks to predict the score, at different noise level

Once trained, neural networks can be used to transport latent space noise to samples from the data distribution

Slide from Supranta Bouruah




Bin 1

Bin 2

Diffusion models: noisy data == underlying field

Learns the ‘prior’ distribution of mass maps from simulations
Reconstruct mass map from noisy survey data with no additional training!
High resolution maps with uncertainty estimates — fast and robust
Uses the simulation prior and shared information across z bins to achieve

arc-minute scale resolution
Bouruah, Jacob, BJ 2025, arXiv:2502.04158
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Mass mapping summary

Our analytical Gaussianizing method is effective on scales
above the 1-halo regime

— applications for covariance estimation, data compression and
fine tuning of deep learning models

Diffusion models help generate high resolution mass maps
given a simulation based prior

— Additional applications in reconstructing mass maps from noisy
data: finding interesting LSS features and comparing to optical or
SZ maps



o Results from three-point correlations



Three-point correlations

Four 3-point functions of shear
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Distinct sighatures of quasilinear gravitational clustering

Takada & BJ 2003a,b; Zaldarriaga & Scoccimarro; Ho & White 2003
Krause, Eifler, Schneider 2012; Linke+ 2022; Burger+ 2024

For galaxy distribution: Wang, Jeong+ 2024



3-point function: DES lensing

Halo model 1-halo term prediction DES measurement
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Shape dependence: enables checks on systematics
Much of the information from the quasilinear regime
Secco, Jarvis, BJ+ (DES) 2022

Gomes, Sugiyama, BJ+ (DES) 2025a,b



Cosmology with 2+3pt functions: Simulations

: BN 2PCF
1. All 3-point functions: 0.85 - (M) (auto)
100,000 element datavecor | - (M) (all)
2. Compress into Map”3 ->
~100 numbers (90% of the
information) 0.80 -
3. All tomographic bins (20) 0
4. Model IA (NLA) and mitigate n | a———
other systematics.
Gain ~80% on Figure of Merit 0.751
(FOM)
See also Linke+ 2023 and
Burger+ (KIDS) 2024 analysis 0.70 e . .
0.1 0.2 0.3 0.4 0.5 0.6
Qn

Gomes, Sugiyama,BJ + DES 2025; Data analysis next



Robustness to baryonic feedback
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Possibility of different effects of baryonic feedback on 2 and 3pt
correlations: net result is more robust. But depends on analysis details.
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Wavelet based nonlocal, nonlinear transtforms

scattering

Figure 2. Texture synthesis using the scattering transform for a variety of physical fields: Turing pattern, Ising model, ocean turbulence, solar surface, cosmic
matter density. The upper panels show input 2-D fields from simulations or observations. The lower panels show randomly generated fields with scattering
coefficients matching their upper counterparts.

Wavelet can represent non-Gaussian stochastic fields pretty well. Cheng & Menard 2021 26



(k2)

(k3)

WPHgy; WPHg

ST,
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Happiness is...a band diagonal covariance matrix!

The wavelet-transformed field has most of the information in its low order statistics.
Gatti+ 2023.



SBI (Stmulation Based Inference, aka LFI)
with wavelets: DES Year 3 analysis
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SBI steps: Simulation, Summary statistic measurement, Data compression, Emulation,

Posterior estimation, Tests of confidence intervals
2-sigma tension with Planck (but consistent with w=-1)
Gatti+ 2023,2024 (DES collaboration): arXiv:2310.17557, arXiv:2405.10881
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Summary Statistics vs Field Level Inference

Simulation Based Inference is well matched for weak lensing: fully nonlinear
field with uncertain physics and systematics ~amenable to simulations. Which
is not to say it is easy!

Deep learning aims to extract all the information in mass maps
(though most of the new information comes from the smallest scales)

Results so far are promising but a long path ahead to validate and interpret the
extra information gained

See: Sharma, Dai, Seljak papers.

Is Interpreting Deep Learning a fantasy?

Do we even Interpret “analytical’ methods anymore?



Assorted deep learning topics

—  swin-t
—— resnet34
Combined
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A light-weight CNN for cosmology with regularization methods that
avoid over-fitting. Zhong, Gatti, BJ, arXiv:2403.01368

Al x Science collaboration: sum-of-parts interpretation. w/ Weigiu You &
Eric Wong at Penn



« Dimensionality reduction for Simulation Based Inference (SBI)
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Dimensionality Reduction Techniques for Statistical Inference in
Cosmology

Minsu Park, Marco Gatti, Bhuvnesh Jain

We explore linear and non-linear dimensionality reduction techniques for statistical inference of parameters in
cosmology. Given the importance of compressing the increasingly complex data vectors used in cosmology,
we address questions that impact the constraining power achieved, such as: Are currently used methods
effectively lossless? Under what conditions do nonlinear methods, typically based on neural nets, outperform
linear methods? Through theoretical analysis and experiments with simulated weak lensing data vectors we
compare three standard linear methods and neural network based methods. We propose two linear methods
that outperform all others while using less computational resources: a variation of the MOPED algorithm we
call e-MOPED and an adaptation of Canonical Correlation Analysis (CCA), which is a method new to cosmology
but well known in statistics. Both e-MOPED and CCA utilize simulations spanning the full parameter space,
and rely on the sensitivity of the data vector to the parameters of interest. The gains we obtain are significant
compared to compression methods used in the literature: up to 30% in the Figure of Merit for €,, and Sg in a
realistic Simulation Based Inference analysis that includes statistical and systematic errors. We also
recommend two modifications that improve the performance of all methods: First, include components in the
compressed data vector that may not target the key parameters but still enhance the constraints on due to
their correlations. The gain is significant, above 20% in the Figure of Merit. Second, compress Gaussian and
non-Gaussian statistics separately —-- we include two summary statistics of each type in our analysis.
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Dimensionality Reduction

Linear Methods : Construct transformation
matrices (U) such that data (vector)

compression is a linear operation ¢= Ut
— PCA
— MOPED, e-MOPED

— CCA

Non-linear methods : Train a neural network
such that the compression is a neural network
transformation c¢= fs(t)

— NN-MSE, IMNN, VMIM

>
\/
N



MOPED, e-MOPED

MOPED is ‘Optimal’ for a Gaussian linear model with
parameter independent noise

Computing fiducial covariance and parameter derivatives
is computationally expensive
- Especially so for higher order statistics

What if we could compute them without extra simulations?
Use linear regression to find the implied Jacobian (derivatives)

With this linear model, we can “shift” the simulated data
vectors to a fixed point in parameter space for a ‘fiducial
covariance’ estimate

It’s “easier”: e-MOPED!



Canonical Correlation Analysis

|ldentify linear combinations of data vector and parameters of
maximum correlation, can also be understood as maximizing
mutual information between parameter and data vector given
a Gaussian linear model

Boils down to a generalized eigenvalue problem



NN-MSE and Optuna

- Train neural networks to infer parameter values from data
vector

min Y (fo(t) — i)

- The (optimally) inferred parameter values serve as the
compressed DV

- Each parameter has a different optimal architecture for
inference

- Tune architecture for each parameter with Optuna (# of layers, layer width,
learning rate)



Which Compression Method Should We Use?

Qm-Sg Constraints from WL23_WPH_CMBWL

—— NN-MSE, FoM=1700 FoM Achieved Relative to MOPED
— PCA, FoM=1300
—— MOPED, FoM=1500
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-  For current data and simulation resources: CCA or e-MOPED
- PCA fails with HoS

- NN-MSE worse than linear in practice

- CCA and e-MOPED computationally feasible and better than MOPED .



Conclusions

Analytical point transforms generate reliable mass maps on scales
above ~2 Mpc

Diffusion models generate and reconstruct high resolution mass
maps

3-point correlations and wavelet based statistics are powerful
Beyond 2-pt statistics.

We are developing a path to selecting a realistic set of summary
statistics.

Improvements in SBI

— Data compression

— Interpolating simulations in parameter space

— Build and regularize a CNN for cosmology

— Fine tuning for deep learning



